Энциклопедия что такое кто такой электростанция. Электрификация нашей страны. Что входит в энергосистему

Электроста́нция - электрическая станция, совокупность установок, оборудования и аппаратуры, используемых непосредственно для производства электрической энергии, а также необходимые для этого сооружения и здания, расположенные на определённой территории. Рассмотрим как работает ТЭЦ.

ТЭЦ - сокращенное от теплоэлектроцентраль - это разновидность тепловой станции, которая производит не только электроэнергию, но и является источником тепла, в виде пара или горячей воды.

Итак, все начинается с воды. Поскольку вода (и пар, как её производное) на ТЭЦ является основным теплоносителем, перед тем как она попадет в котел, её необходимо предварительно подготовить.

Для того, что бы в котлах не образовывалась накипь, на первом этапе, воду необходимо умягчить, а на втором, очистить её от всевозможных примесей и включений.

Происходит все это на территории химического цеха, в котором расположены специальные емкости и сосуды. Вода перекачивается огромными насосами. Полученную здесь воду, в дальнейшем мы будем называть "Чистой Водой".

В качестве топлива используют газ, мазут или уголь. Топливо и вода поступают в Котлотурбинный цех. Состоит он из двух отделений. В первом находятся котлы, каждый высотой с двенадцатиэтажный дом. Всего на ТЭЦ их пять штук. Это сердце ТЭЦ, и здесь происходит основное действие. Газ, поступающий в котел, сгорает, выделяя огромное количество энергии. Сюда же подается "Чистая вода". После нагрева она превращается в пар, точнее в перегретый пар, имеющий температуру на выходе 560 градусов, а давление 140 атмосфер. Мы тоже назовем его "Чистый пар", потому что он образован из подготовленной воды.

Кроме пара, на выходе мы еще имеем выхлоп. На максимальной мощности, все пять котлов потребляют почти 60 кубометров природного газа в секунду! Что бы вывести продукты сгорания нужна большая "дымовая" труба. И такая тоже имеется. В втором отделении котлотурбинного цеха находятся установки, вырабатывающие электроэнергию. В машинном зале ТЭЦ их установлено четыре штуки, общей мощностью 460 МВт (мегаватт). Именно сюда подается перегретый пар из котельного отделения. Он, под огромным давлением направляется на лопатки турбины, заставляя вращаться тридцатитонный ротор, со скоростью 3000 оборотов в минуту.

Установка состоит из двух частей: собственно сама турбина, и генератор, вырабатывающий электроэнергию. После котлотурбинного цеха, электроэнергию подается для преобразования в трансформатор и далее на линии электропередачи, а частично остывший и потерявший часть давления пар отпускать на сторону невыгодно. Так как он образован из "Чистой воды", производство которой довольно сложный и затратный процесс, его целесообразней охладить и вернуть обратно в котел. И так по замкнутому кругу. Зато с его помощью, и с помощью теплообменников можно нагреть воду или произвести вторичный пар, которые спокойно продавать сторонним потребителям.

Вот таким образом, мы с вами получаем тепло и электричество в свои дома, имея привычный комфорт и уют.

Днем и ночью бежит по проводам электрический ток. Он необходим на заводе и на животноводческой ферме, в поезде и в квартире, на телефонной станции и в магазине. Везде вы встре- тите электродвигатели, электроприборы или просто электрическую лампочку.
Откуда же берется электрическая энергия? Ее вырабатывают на элект- ростанциях специальные машины - генераторы электрического тока. Разные бывают генераторы. И очень маленькие, энергии которых хватает только для освещения небольшой комнаты. И генераторы-гиганты, которые могут дать электроэнергию большому городу.
Чтобы генератор давал электрический ток, его надо вращать. Конечно, не весь генератор, а только его часть - ротор. У больших генераторов ротор весит сотни тонн, и вращает его особая машина - турбина.
У каждой турбины есть рабочее колесо с лопатками, или лопастями. Струя пара, раскаленного газа или воды с силой бьет по лопастям рабочего колеса турбины и заставляет ее вращаться, а вместе с турбиной - и ротор генератора.
Если турбину вращает струя воды, то такая турбина называется гидрав- лической, а электростанция, на которой установлены такие турбины, - гидроэлектростанцией или сокращенно ГЭС. На тепловой электростанции (ТЭС) турбину вращает пар, а на газотурбинной - струя раскаленных газов.
Гидроэлектростанции обычно строят на больших, полноводных реках, таких, как Волга, Днепр, Енисей, или же на горных реках (например, на реке Вахш построена Нурекская ГЭС). Здание ГЭС, плотина, судоходные каналы - это сложные и дорогие сооружения. Для ТЭС не нужны плотины и водохранилища, строить их можно везде. Но ТЭС постоянно нуждаются в топливе, чтобы можно было нагревать воду и получать пар. И идут один за другим поезда - везут на ТЭС уголь, мазут; днем и ночью гонят газ по трубам специальные вентиляторы- компрессоры.
А вот для атомной электростанции (АЭС) топлива требуется совсем не- много. Но топливо это особое. Всего 10 граммов атомного топлива заменяют целый вагон угля. Так же как на тепловой, на атомной электростанции" электрогенераторы вращаются паро- выми турбинами. Но ни угольной, ни газовой топки, ни парового котла там нет. Тепло, которое используют для получения пара, выделяется в атомном реакторе - сердце АЭС - в результате ядерной реакции. Ядерную реакцию можно сравнить с небольшими непрерывно повторяющимися атомными взрывами. Но это мирные взрывы. Реактор надежно закрыт толстыми бетонными стенами. Ядерную реакцию непрерывно контролируют автоматические приборы. Если потребуется, ее можно быстро остановить.
Ученые и инженеры ищут новые источники электроэнергии. Нельзя ли, например, заставить работать морские приливы и отливы? Заставить море вращать гидротурбины электростанции? Оказывается, можно. И такие электростанции - их называют приливными или ПЭС - уже работают.
Миллиарды лет щедрое Солнце посылает свои лучи на Землю. Солнечный свет - это тоже энергия. И люди научились превращать ее в электрический ток. Для этого созданы специальные приборы на полупроводниках - фотоэлементы. Собранные вместе, они образуют так называемые солнечные батареи. Солнечные батареи пока еще дороги, и на Земле их используют редко. Зато именно они дают электроэнергию космическим кораблям и искусственным спутникам Земли.


Электроста нция, электрическая станция, совокупность установок, оборудования и аппаратуры, используемых непосредственно для производства электрической энергии, а также необходимые для этого сооружения и здания, расположенные на определённой территории. В зависимости от источника энергии различают тепловые электростанции , гидроэлектрические станции , гидроаккумулирующие электростанции , атомные электростанции , а также приливные электростанции , ветроэлектростанции , геотермические электростанции и Э. с магнитогидродинамическим генератором .

Тепловые Э. (ТЭС) являются основой электроэнергетики ; они вырабатывают электроэнергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива. По виду энергетического оборудования ТЭС подразделяют на паротурбинные, газотурбинные и дизельные Э.

Основное энергетическое оборудование современных тепловых паротурбинных Э. составляют котлоагрегаты , паровые турбины , турбогенераторы , а также пароперегреватели, питательные, конденсатные и циркуляционные насосы, конденсаторы , воздухоподогреватели, электрические распределительные устройства . Паротурбинные Э. подразделяются на конденсационные электростанции и теплоэлектроцентрали (теплофикационные Э.).

На конденсационных Э. (КЭС) тепло, полученное при сжигании топлива, передаётся в парогенераторе водяному пару, который поступает в конденсационную турбину , внутренняя энергия пара преобразуется в турбине в механическую энергию и затем электрическим генератором в электрический ток . Отработанный пар отводится в конденсатор, откуда конденсат пара перекачивается насосами обратно в парогенератор. КЭС, работающие в энергосистемах СССР, называются также ГРЭС .

В отличие от КЭС на теплоэлектроцентралях (ТЭЦ) перегретый пар не полностью используется в турбинах, а частично отбирается для нужд теплофикации. Комбинированное использование тепла значительно повышает экономичность тепловых Э. и существенно снижает стоимость 1 квт ·ч вырабатываемой ими электроэнергии.

В 50-70-х гг. в электроэнергетике появились электроэнергетические установки с газовыми турбинами . Газотурбинные установки в 25-100 Мвт используются в качестве резервных источников энергии для покрытия нагрузок в часы «пик» или в случае возникновения в энергосистемах аварийных ситуаций. Перспективно применение комбинированных парогазовых установок (ПГУ), в которых продукты сгорания и нагретый воздух поступают в газовую турбину, а тепло отработанных газов используется для подогрева воды или выработки пара для паровой турбины низкого давления.

Дизельной Э. называется энергетическая установка, оборудованная одним или несколькими электрическими генераторами с приводом от дизелей . На стационарных дизельных Э. устанавливаются 4-тактныс дизель-агрегаты мощностью от 110 до 750 Мвт; стационарные дизельные Э. и энергопоезда (по эксплуатационным характеристикам они относятся к стационарным Э.) оснащаются несколькими дизельагрегатами и имеют мощность до 10 Мвт. Передвижные дизельные Э. мощностью 25-150 квт размещаются обычно в кузове автомобиля (полуприцепа) или на отдельных шасси либо на ж.-д. платформе, в вагоне. Дизельные Э. используются в сельском хозяйстве, в лесной промышленности, в поисковых партиях и т. п. в качестве основного, резервного или аварийного источника электропитания силовых и осветительных сетей. На транспорте дизельные Э. применяются как основные энергетические установки (дизель-электровозы, дизель-электроходы).

Гидроэлектрическая станция (ГЭС) вырабатывает электроэнергию в результате преобразования энергии потока воды. В состав ГЭС входят гидротехнические сооружения (плотина , водоводы, водозаборы и пр.), обеспечивающие необходимую концентрацию потока воды и создание напора , и энергетическое оборудование (гидротурбины , гидрогенераторы , распределительные устройства и т. п.). Сконцентрированный, направленный поток воды вращает гидротурбину и соединённый с ней электрический генератор.

По схеме использования водных ресурсов и концентрации напоров ГЭС обычно подразделяют на русловые, приплотинные, деривационные, гидроаккумулирующие и приливные. Русловые и приплотинные ГЭС сооружают как на равнинных многоводных реках, так и на горных реках, в узких долинах. Напор воды создаётся плотиной, перегораживающей реку и поднимающей уровень воды верхнего бьефа. В русловых ГЭС здание Э. с размещенными в нём гидроагрегатами является частью плотины. В деривационных ГЭС вода реки отводится из речного русла по водоводу (деривации ), имеющему уклон, меньший, чем средний уклон реки на используемом участке; деривация подводится к зданию ГЭС, где вода поступает на гидротурбины. Отработавшая вода либо возвращается в реку, либо подводится к следующей деривационной ГЭС. Деривационные ГЭС сооружают главным образом на реках с большим уклоном русла и, как правило, по совмещенной схеме концентрации потока (плотина и деривация совместно).

Гидроаккумулирующая Э. (ГАЭС) работает в двух режимах: аккумулирования (энергия, получаемая от других Э., главным образом в ночные часы, используется для перекачки воды из нижнего водоёма в верхний) и генерирования (вода из верхнего водоёма по трубопроводу направляется к гидроагрегатам; вырабатываемая электроэнергия отдаётся в энергосистему). Наиболее экономичны мощные ГАЭС, сооружаемые вблизи крупных центров потребления электроэнергии; их основное назначение - покрывать пики нагрузки, когда мощности энергосистемы использованы полностью, и потреблять излишки электроэнергии в то время суток, когда другие Э. оказываются недогруженными.

Приливные Э. (ПЭС) вырабатывают электроэнергию в результате преобразования энергии морских приливов. Электроэнергия ПЭС из-за периодического характера приливов и отливов может быть использована лишь совместно с энергией др. Э. энергосистемы, которые восполняют дефицит мощности ПЭС в пределах суток и месяца.

Источником энергии на атомной Э. (АЭС) служит ядерный реактор , где энергия выделяется (в виде тепла) вследствие цепной реакции деления ядер тяжёлых элементов. Выделившееся в ядерном реакторе тепло переносится теплоносителем, который поступает в теплообменник (парогенератор); образующийся пар используется так же, как на обычных паротурбинных Э. Существующие способы и методы дозиметрического контроля полностью исключают опасность радиоактивного облучения персонала АЭС.

Ветроэлектростанция вырабатывает электроэнергию в результате преобразования энергии ветра. Основное оборудование станции - ветродвигатель и электрический генератор. Ветровые Э. сооружают преимущественно в районах с устойчивым ветровым режимом.

Геотермическая Э. - паротурбинная Э., использующая глубинное тепло Земли. В вулканических районах термальные глубинные воды нагреваются до температуры свыше 100°С на сравнительно небольшой глубине, откуда они по трещинам в земной коре выходят на поверхность. На геотермических Э. пароводяная смесь выводится по буровым скважинам и направляется в сепаратор, где пар отделяется от воды; пар поступает в турбины, а горячая вода после химической очистки используется для нужд теплофикации. Отсутствие на геотермических Э. котлоагрегатов, топливоподачи, золоуловителей и т. п. снижает затраты на строительство такой Э. и упрощает её эксплуатацию.

Э. с магнитогидродинамическим генератором (МГД-генератор) - установка для выработки электроэнергии прямым преобразованием внутренней энергии электропроводящей среды (жидкости или газа).

Лит.: см. при статьях Атомная электростанция , Ветроэлектрическая станция , Гидроэлектрическая станция , Приливная электростанция . Тепловая паротурбинная электростанция , а также при ст. Наука (раздел Энергетическая наука и техника. Электротехника).

В. А. Прокудин.

С точки зрения науки электричество – это направленное движение заряженных частиц. Даже многие взрослые этого определения не понимают. Поэтому скажу тебе лишь о проявлениях электричества в обычной жизни. Это не только лампочка над головой, но и холодильник, пылесос, телефон, телевизор, компьютер и масса другой техники. Все они питаются электричеством, которое превращается внутри них в другие виды энергии: световую, тепловую, механическую (это движение) и другие. Молния – это тоже электрический разряд.
Электричество возникает в проводнике (не все тела проводят электричество), когда с одной стороны больше частичек одного вида, а с другой больше частичек другого вида (отрицательно заряженных и положительно заряженных). Чтобы создать условия для появления электричества люди придумали много способов. Например, когда текущая вода реки вращает магнит вокруг проводника - в нем появляется электричество.
С электричеством надо обходиться очень осторожно – оно обладает большой силой и может нанести вред человеку. Например, никогда нельзя в электрическую розетку что-то засовывать, кроме электрической вилки!

ская тепловая электростанция имеет мощность 1,8 млн. квт, а Луганская, тоже тепловая,- 1,5 млн. квт. По сверхдальним линиям электро­передач энергия передается самым высоким в мире напряжением -500 тыс. в переменного и 800 тыс. в постоянного тока.

Лавина энергии

Потребности нашей страны в электроэнергии огромны. Но энергетики хотят точно знать, как будет расти потребление электричества, чтобы составить план строительства электростанций. Зная, сколько электроэнергии идет на произ­водство, например, одного автомобиля, спе­циалисты могут подсчитать потребность в энер­гии всех автомобильных заводов страны. А на­блюдая, как вы за завтраком режете свежий хлеб, энергетики сообщат вам любопытный факт. Оказывается, на производство килограм­ма хлеба - от возделывания пшеницы в поле до прилавка булочной - тратится 1 квт-ч электроэнергии.

Так, идя от одного вида продукции к друго­му, учитывая ежегодный рост производства, потребности домашнего хозяйства, школ, теат­ров и т. д., энергетики приходят к общей сумме потребности энергии.

В Программе партии записано: поднять вы­работку электроэнергии к 1980 г. до 2700- 3000 млрд. квт-ч. Это 340 планов ГОЭЛРО! Для производства такой массы электроэнергии нужно построить около 640 крупных электростанций всех типов. Их общая мощность должна быть примерно в пять раз больше, чем мощность всех электростанций страны в 1965 г.

Промышленность и транспорт израсходуют почти две трети всей этой энергии. Ведь только химическая промышленность потребует в 1980 г. около 300 млрд. квт-ч.

Очень резко, до нескольких сот миллиардов киловатт-часов, вырастут потребности сельского хозяйства. На фермах колхозов и совхозов электрические машины производят многие рабо­ты. Они измельчают и запаривают корма, доят коров, охлаждают молоко; электричество подает воду на поля в засушливых районах; без больших затрат электроэнергии нельзя изгото­вить минеральные удобрения.

Городское и домашнее хозяйство, культур­ные учреждения тоже потребуют немало энер­гии. Скоро каждой семье понадобится не менее 500 квт-ч в год. А Московскому университету уже сейчас нужно столько энергии, сколько

дает Волховская ГЭС. Во время интересных передач Центрального телевидения все вклю­ченные телевизоры потребляют мощность целой Днепровской ГЭС.

Энергия должна выть дешевой

Но если электрическая энергия будет обхо­диться дорого, то мы не сможем применять ее так широко, как хотим. Поэтому надо точно знать, из чего складывается цена электроэнер­гии, чтобы сокращать затраты.

На тепловой электростанции до 65% всех расходов идет на топливо. Лучшие совет­ские тепловые электростанции расходуют сегод­ня 400-500 г топлива на выработку 1 квт-ч. А к 1980 г. этот расход в результате ввода сверх­мощных и более экономичных турбин и генера­торов будет снижен почти до 300 г.

В стоимость 1 квт-ч входят еще расходы на зарплату работников электростанций. Но людей на электрических станциях стано­вится все меньше: их работу берут на себя ав­томаты.

Теперь дальше. На постройку самой стан­ции, еще до того как она дала первый ток, ушли большие средства. Их постепенно, с рассрочкой в 3-5 лет, прибавляют к цене выработанной энергии - надо же покрыть расходы на строи­тельство. Кроме того, в течение 30 лет отчис­ляются суммы, которые покрывают износ здания и оборудования. Эти добавки называют отчислениями на амортизацию.

В себестоимости одного киловатт-часа, про­изведенного на гидроэлектростанции, доля амор­тизации достигает 90%. Сроки окупаемости здесь составляют 3-7 лет, а сроки амортиза­ции - от 50 до 100 лет. Гидроузлы - очень дорогие сооружения. Но зато текущие расходы на выработку электроэнергии здесь незначи­тельны: топлива не надо совсем, и ГЭС уже сегодня работают автоматически. Мы строим сейчас в основном тепловые станции, потому что их сооружать быстрее и дешевле. Но и о ги­дроэлектростанциях не забываем.

Если бы к 1980 г., когда мы будем выраба­тывать до 3000 млрд. квт-ч в год, себестоимость энергии снизилась против сегодняшней всего на 1 %, мы сэкономили бы в течение года сред­ства для постройки школ на 450 тыс. человек.

Но в 1980 г. новые электростанции будут вырабатывать очень дешевую электроэнергию. 1 квт-ч обойдется в три раза дешевле, чем сей­час,- в среднем не более четверти копейки.

Удешевление энергии приведет к резкому снижению стоимости всей продукции в стране.

Электростанции страны «берутся за руки»

Включая электромотор или телевизор, мно­гие и не подозревают, что послушная им энер­гия родилась очень далеко, быть может, за сотни километров от места потребления. Действитель­но, энергетиков уже не смущают большие рас­стояния. Электропередачи тянутся по всей стране на тысячи километров, и нет у них сопер­ников ни в быстроте передачи энергии (300 тыс. км/сек!), ни в «провозоспособности» (миллиарды киловатт-часов!), ни в возможности подвести энергию вплотную к потребителям. Важно и то, что на тысячекилометровых элект­рических трассах почти не видно людей.

Но в разное время года, в разные часы суток нужны разные количества энергии. Ле­том, когда день длинный, на освещение тратится меньше электричества, чем зимой. А в сельском хозяйстве, например на орошение и другие ра­боты, максимальное количество энергии требует­ся именно летом. В дневные и вечерние часы, когда работают все предприятия и включается освещение, нужно больше энергии, чем ночью.

Если строить электростанции с учетом мак­симальной потребности (энергетики говорят - с учетом «пиков»), то часть турбин в «тихие» часы придется останавливать. Это значит, что на сооружение и содержание этих дополни­тельных турбин будут затрачены лишние сред­ства. Не лучше ли в часы «пик» добавить энер­гии с другой станции, из района, где, скажем, в это время уже наступила ночь?

Так и делают: объединяют электростанции линиями электропередач в единую систему. И передают энергию оттуда, где ее в этот мо­мент избыток, туда, где ее не хватает. Объеди­нив все станции страны, мы создадим Единую энергетическую систему (ЕЭС). Только ЕЭС способна сгладить все «пики» и одновременно забрать все излишки электроэнергии; только она может дать дешевую энергию всем отраслям народного хозяйства, культуры и быта.

ЕЭС значительно улучшает и работу самих электростанций: снижаются затраты на строи­тельство и эксплуатацию, уменьшаются и общая нагрузка, и те скачки в графике нагрузок - «пики», которые так дорого обходятся разоб­щенным электростанциям.

Перекрыть шестую часть суши земного ша­ра мощными линиями электропередач - это раньше казалось фантастикой. Но теперь мы

Волховская ГЭС им. В. И. Ленина (1926). Мощность - 56 тыс. квт .

Днепрогэс им. В. И. Ленина (1932). Мощность - 650 тыс. квт.

Волжская ГЭС им. XXII съезда КПСС (1960). Мощность - 2350 тыс. квт.