Как найти площадь по периметру многоугольника. Узнать площадь многоугольника по периметру онлайн

В задачах по геометрии часто требуется вычислить площадь многоугольника. Причем он может иметь довольно разнообразную форму - от всем знакомого треугольника до некоторого n-угольника с каким-то невообразимым числом вершин. К тому же эти многоугольники бывают выпуклыми или вогнутыми. В каждой конкретной ситуации полагается отталкиваться от внешнего вида фигуры. Так получится выбрать оптимальный путь решения задачи. Фигура может оказаться правильной, что существенно упростит решение задачи.

Немного теории о многоугольниках

Если провести три или более пересекающихся прямых, то они образуют некоторую фигуру. Именно она является многоугольником. По количеству точек пересечения становится ясно, сколько вершин у него будет. Они дают название получившейся фигуре. Это может быть:

Такая фигура непременно будет характеризоваться двумя положениями:

  1. Смежные стороны не принадлежат одной прямой.
  2. У несмежных отсутствуют общие точки, то есть они не пересекаются.

Чтобы понять, какие вершины являются соседними, потребуется посмотреть, принадлежат ли они одной стороне. Если да, то соседние. В противном случае их можно будет соединить отрезком, который необходимо назвать диагональю. Их можно провести только в многоугольниках, у которых больше трех вершин.

Какие их виды существуют?

Многоугольник, у которого больше четырех углов, может быть выпуклым или вогнутым. Отличие последнего в том, что некоторые его вершины могут лежать по разные стороны от прямой, проведенной через произвольную сторону многоугольника. В выпуклом всегда все вершины лежат с одной стороны от такой прямой.

В школьном курсе геометрии большая часть времени уделяется именно выпуклым фигурам. Поэтому в задачах требуется узнать площадь выпуклого многоугольника. Тогда существует формула через радиус описанной окружности, которая позволяет найти искомую величину для любой фигуры. В других случаях однозначного решения не существует. Для треугольника формула одна, а для квадрата или трапеции совершенно другие. В ситуациях, когда фигура неправильная или вершин очень много, принято разделять их на простые и знакомые.

Как поступить, если фигура имеет три или четыре вершины?

В первом случае он окажется треугольником, и можно воспользоваться одной из формул:

  • S = 1/2 * а * н, где а — сторона, н — высота к ней;
  • S = 1/2 * а * в * sin (А), где а, в — сторон\ы треугольника, А — угол между известными сторонами;
  • S = √(p * (p - а) * (p - в) * (p - с)), где с — сторона треугольника, к уже обозначенным двум, р — полупериметр, то есть сумма всех трех сторон, разделенная на два.

Фигура с четырьмя вершинами может оказаться параллелограммом:

  • S = а * н;
  • S = 1/2 * d 1 * d 2 * sin(α), где d 1 и d 2 — диагонали, α — угол между ними;
  • S = a * в * sin(α).

Формула для площади трапеции: S = н * (a + в) / 2, где а и в — длины оснований.

Как поступить с правильным многоугольником, у которого больше четырех вершин?

Для начала такая фигура характеризуется тем, что в ней все стороны равны. Плюс к этому, у многоугольника одинаковые углы.

Если вокруг такой фигуры описать окружность, то ее радиус совпадет с отрезком от центра многоугольника до одной из вершин. Поэтому для того чтобы вычислить площадь правильного многоугольника с произвольным числом вершин, потребуется такая формула:

S n = 1/2 * n * R n 2 * sin (360º/n), где n — количество вершин многоугольника.

Из нее легко получить такую, которая пригодится для частных случаев:

  1. треугольника: S = (3√3)/4 * R 2 ;
  2. квадрата: S = 2 * R 2 ;
  3. шестиугольника: S = (3√3)/2 * R 2 .

Ситуация с неправильной фигурой

Выходом для того, как узнать площадь многоугольника, если он не является правильным и его нельзя отнести ни к одной из известных ранее фигур, является алгоритм:

  • разбить его на простые фигуры, например, треугольники, чтобы они не пересекались;
  • вычислить их площади по любой формуле;
  • сложить все результаты.

Что делать, если в задаче даны координаты вершин многоугольника?

То есть известен набор пар чисел для каждой точки, которые ограничивают стороны фигуры. Обычно они записываются как (x 1 ; y 1) для первой, (x 2 ; y 2) — для второй, а n-ая вершина имеет такие значения (x n ; y n). Тогда площадь многоугольника определяется, как сумма n слагаемых. Каждое из них выглядит так: ((y i+1 +y i)/2) * (x i+1 - x i). В этом выражении i изменяется от единицы до n.

Стоит отметить, что знак результата будет зависеть от обхода фигуры. При использовании указанной формулы и движении по часовой стрелке ответ будет получаться отрицательным.

Пример задачи

Условие. Координаты вершин заданы такими значениями (0.6; 2.1), (1.8; 3.6), (2.2; 2.3), (3.6; 2.4), (3.1; 0.5). Требуется вычислить площадь многоугольника.

Решение. По формуле, указанной выше, первое слагаемое будет равно (1.8 + 0.6)/2 * (3.6 - 2.1). Здесь нужно просто взять значения для игрека и икса от второй и первой точек. Несложный расчет приведет к результату 1.8.

Второе слагаемое аналогично получается: (2.2 + 1.8)/2 * (2.3 - 3.6) = -2.6. При решении подобных задач не стоит пугаться отрицательных величин. Все идет так, как нужно. Это планомерно.

Подобным образом получаются значения для третьего (0.29), четвертого (-6.365) и пятого слагаемых (2.96). Тогда итоговая площадь равна: 1.8 + (-2.6) + 0.29 + (-6.365) + 2.96 = - 3.915.

Совет по решению задачи, для которой многоугольник изображен на бумаге в клетку

Чаще всего озадачивает то, что в данных имеется только размер клеточки. Но оказывается, что больше сведений не нужно. Рекомендацией к решению такой задачи является разбивание фигуры на множество треугольников и прямоугольников. Их площади довольно просто сосчитать по длинам сторон, которые потом легко сложить.

Но часто есть более простой подход. Он заключается в том, чтобы дорисовать фигуру до прямоугольника и вычислить значение его площади. Потом сосчитать площади тех элементов, которые оказались лишними. Вычесть их из общего значения. Этот вариант порой предполагает несколько меньшее число действий.

Площадь, одна из основных величин, связанных с геометрическими фигурами. В простейших случаях измеряется числом заполняющих плоскую фигуру единичных квадратов, т. е. квадратов со стороной, равной единице длины. Вычисление П. было уже в древности… …

У этого термина существуют и другие значения, см. Площадь (значения). Площадь плоской фигуры аддитивная числовая характеристика фигуры, целиком принадлежащей одной плоскости. В простейшем случае, когда фигуру можно разбить на конечное… … Википедия

I Площадь одна из основных величин, связанных с геометрическими фигурами. В простейших случаях измеряется числом заполняющих плоскую фигуру единичных квадратов, т. е. квадратов со стороной, равной единице длины. Вычисление П.… … Большая советская энциклопедия

У этого термина существуют и другие значения, см. Площадь (значения). Площадь Размерность L² Единицы измерения СИ м² … Википедия

Ж. 1. Часть земной поверхности, пространство, естественно ограниченное или специально выделенное для какой либо цели. отт. Водное пространство. отт. Большое, ровное место, пространство. 2. Ровное незастроенное пространство общественного… … Современный толковый словарь русского языка Ефремовой

Эта статья предлагается к удалению. Пояснение причин и соответствующее обсуждение вы можете найти на странице Википедия:К удалению/2 сентября 2012. Пока процесс обсуждения не завершён, статью можно попытаться улучшить, однако следует… … Википедия

Две фигуры в R2, имеющие равные площади и соответственно два многоугольника M1 и М 2 такие, что их можно разрезать на многоугольники так, что части, составляющие М 1, соответственно конгруэнтны частям, составляющим М 2. Для, равновеликость… … Математическая энциклопедия

В=7, Г=8, В + Г/2 − 1= 10 Теорема Пика классический результат комбинаторной геометрии и геометрии чисел. Площадь многоугольника с целочисле … Википедия

У этого термина существуют и другие значения, см. Теорема Пика. В = 7, Г = 8, В + Г/2 − 1 = 10 Формула Пика (или теорема Пика) классический результат комбинаторной геометрии и геометрии чисел. Площадь … Википедия

Область (связное открытое множество) на границе выпуклого тела в евклидовом пространстве Е 3. Вся граница выпуклого тела наз. полной В. п. Если тело конечно, то полная В. п. наз. замкнутой. Если тело бесконечно, то полная В. п. наз. бесконечной.… … Математическая энциклопедия

Книги

  • Комплект таблиц. Геометрия. 8 класс. 15 таблиц + методика , . Таблицы отпечатаны на плотном полиграфическом картоне размером 680 х 980 мм. В комплект входит брошюра с методическими рекомендациями для учителя. Учебный альбом из 15 листов.…
  • Комплект таблиц. Математика. Геометрические фигуры и величины (9 таблиц) , . Учебный альбом из 9 листов. Точки. Линии. Многоугольники. Периметр многоугольника. Площадь геометрических фигур. Угол. Виды углов. Величины. Единицы времени. Единицыдлины. Единицы массы.…

Каждый, кто изучал в школе математику и геометрию, хотя бы поверхностно знает эти науки. Но со временем, если в них не практиковаться, познания забываются. Многие даже считают, что только зря потратили своё время, изучая геометрические расчёты. Однако они ошибаются. Технические работники выполняют повседневную работу, связанную с геометрическими расчётами. Что касается расчета площади многоугольника, то и эти знания находят своё применение в жизни. Понадобятся они хотя бы для того, чтобы рассчитать площадь земельного участка. Итак, давайте узнаем, как найти площадь многоугольника.

Определение многоугольника

Сначала определимся с тем, что такое многоугольник. Это плоская геометрическая фигура, которая образовалась в результате пересечения трех или более прямых. Другое простое определение: многоугольник — это замкнутая ломаная. Естественно, при пересечении прямых образуются точки пересечения, их количество равно количеству прямых, образовывающих многоугольник. Точки пересечения называют вершинами, а отрезки, образованные от прямых, - сторонами многоугольника. Смежные отрезки многоугольника находятся не на одной прямой. Отрезки, являющиеся несмежными, - это те, которые не проходят через общие точки.

Сумма площадей треугольников

Как находить площадь многоугольника? Площадь многоугольника - это внутренняя часть плоскости, которая образовалась при пересечении отрезков или сторон многоугольника. Поскольку многоугольник - это сочетание таких фигур, как треугольник, ромб, квадрат, трапеция, то универсальной формулы для вычисления его площади просто нет. На практике наиболее универсальным является метод разбиения многоугольника на более простые фигуры, нахождение площади которых не вызывают затруднений. Сложив суммы площадей этих простых фигур, получают площадь многоугольника.

Через площадь окружности

В большинстве случаев многоугольник имеет правильную форму и образует фигуру с равными сторонами и углами между ними. Рассчитать площадь в этом случае очень просто при помощи вписанной или описанной окружности. Если известна площадь окружности, то её необходимо умножить на периметр многоугольника, а затем полученное произведение поделить на 2. В итоге получается формула расчёта площади такого многоугольника: S = ½∙P∙r., где P — площадь окружности, а r — периметр многоугольника.

Метод разбиения многоугольника на «удобные» фигуры - самый популярный в геометрии, он позволяет быстро и правильно найти площадь многоугольника. 4 класс средней школы обычно изучает такие методы.

Площадь многоугольника. Друзья! К вашему вниманию пару задачек с многоугольником и вписанной в него окружностью. Существует формула, которой связывается радиус указанной окружности и периметр с площадью такого многоугольника. Вот она:

Как выводится эта формула? Просто!

Имеем многоугольник и вписанную окружность. *Рассмотрим вывод на примере пятиугольника. Разобьём его на треугольники (соединим центр окружности и вершины отрезками). Получается, что у каждого треугольника основание является стороной многоугольника, а высоты образованных треугольников равны радиусу вписанной окружности:

Используя формулу площади треугольника можем записать:


Вынесем общие множители:

Уверен, сам принцип вам понятен.

*При выводе формулы количество сторон взятого многоугольника не имеет значения. В общем виде вывод формулы выглядел бы так:


*Дополнительная информация!

Известна формула радиуса окружности вписанной в треугольник

Не трудно заметить, что она исходит из полученной нами формулы, посмотрите (a,b,c – это стороны треугольника):

27640. Около окружности, радиус которой равен 3, описан многоугольник, периметр которого равен 20. Найдите его площадь.

Вычисляем:

Ещё пара задач с многоугольниками.

27930. Угол между стороной правильного n -угольника, вписанного в окружность, и радиусом этой окружности, проведенным в одну из вершин стороны, равен 54 0 . Найдите n .

Если угол между радиусом окружности и стороной многоугольника равен 54 0 , то угол между сторонами многоугольника будет равен 108 0 . Тут необходимо вспомнить формулу угла правильного многоугольника:

Остаётся подставить в формулу значение угла и вычислить n:

27595. Периметры двух подобных многоугольников относятся как 2:7. Площадь меньшего многоугольника равна 28. Найдите площадь большего многоугольника.

Здесь нужно вспомнить о том, что если линейные размеры фигуры увеличивается в k раз, то площадь фигуры увеличивается в k 2 раз. *Свойство подобия фигур.

Периметр большего многоугольника больше периметра меньшего в 7/2 раза, значит площадь увеличилась в (7/2) 2 раза. Таким образом, площадь большего многоугольника равна.