Свойства степеней с разными числами. Степень числа: определения, обозначение, примеры

В рамках этого материала мы разберем, что такое степень числа. Помимо основных определений мы сформулируем, что такое степени с натуральными, целыми, рациональными и иррациональными показателями. Как всегда, все понятия будут проиллюстрированы примерами задач.

Yandex.RTB R-A-339285-1

Сначала сформулируем базовое определение степени с натуральным показателем. Для этого нам понадобится вспомнить основные правила умножения. Заранее уточним, что в качестве основания будем пока брать действительное число (обозначим его буквой a), а в качестве показателя – натуральное (обозначим буквой n).

Определение 1

Степень числа a с натуральным показателем n – это произведение n -ного числа множителей, каждый из которых равен числу а. Записывается степень так: a n , а в виде формулы ее состав можно представить следующим образом:

Например, если показатель степени равен 1 , а основание – a , то первая степень числа a записывается как a 1 . Учитывая, что a – это значение множителя, а 1 – число множителей, мы можем сделать вывод, что a 1 = a .

В целом можно сказать, что степень – это удобная форма записи большого количества равных множителей. Так, запись вида 8 · 8 · 8 · 8 можно сократить до 8 4 . Примерно так же произведение помогает нам избежать записи большого числа слагаемых (8 + 8 + 8 + 8 = 8 · 4) ; мы это уже разбирали в статье, посвященной умножению натуральных чисел.

Как же верно прочесть запись степени? Общепринятый вариант – « a в степени n ». Или можно сказать « n -ная степень a » либо « a n -ной степени». Если, скажем, в примере встретилась запись 8 12 , мы можем прочесть « 8 в 12 -й степени», « 8 в степени 12 » или « 12 -я степень 8 -ми».

Вторая и третья степени числа имеют свои устоявшиеся названия: квадрат и куб. Если мы видим вторую степень, например, числа 7 (7 2) , то мы можем сказать « 7 в квадрате» или «квадрат числа 7 ». Аналогично третья степень читается так: 5 3 – это «куб числа 5 » или « 5 в кубе». Впрочем, употреблять стандартную формулировку «во второй/третьей степени» тоже можно, это не будет ошибкой.

Пример 1

Разберем пример степени с натуральным показателем: для 5 7 пятерка будет основанием, а семерка – показателем.

В основании не обязательно должно стоять целое число: для степени (4 , 32) 9 основанием будет дробь 4 , 32 , а показателем – девятка. Обратите внимание на скобки: такая запись делается для всех степеней, основания которых отличаются от натуральных чисел.

Например: 1 2 3 , (- 3) 12 , - 2 3 5 2 , 2 , 4 35 5 , 7 3 .

Для чего нужны скобки? Они помогают избежать ошибок в расчетах. Скажем, у нас есть две записи: (− 2) 3 и − 2 3 . Первая из них означает отрицательное число минус два, возведенное в степень с натуральным показателем три; вторая – число, соответствующее противоположному значению степени 2 3 .

Иногда в книгах можно встретить немного другое написание степени числа – a ^ n (где а – основание, а n - показатель). То есть 4 ^ 9 – это то же самое, что и 4 9 . В случае, если n представляет собой многозначное число, оно берется в скобки. Например, 15 ^ (21) , (− 3 , 1) ^ (156) . Но мы будем использовать обозначение a n как более употребительное.

О том, как вычислить значение степени с натуральным показателем, легко догадаться из ее определения: нужно просто перемножить a n -ное число раз. Подробнее об этом мы писали в другой статье.

Понятие степени является обратным другому математическому понятию – корню числа. Если мы знаем значение степени и показатель, мы можем вычислить ее основание. Степень обладает некоторыми специфическими свойствами, полезными для решения задач, которые мы разобрали в рамках отдельного материала.

В показателях степени могут стоять не только натуральные числа, но и вообще любые целые значения, в том числе отрицательные и нули, ведь они тоже принадлежат к множеству целых чисел.

Определение 2

Степень числа с целым положительным показателем можно отобразить в виде формулы: .

При этом n – любое целое положительное число.

Разберемся с понятием нулевой степени. Для этого мы используем подход, учитывающий свойство частного для степеней с равными основаниями. Оно формулируется так:

Определение 3

Равенство a m: a n = a m − n будет верно при условиях: m и n – натуральные числа, m < n , a ≠ 0 .

Последнее условие важно, поскольку позволяет избежать деления на ноль. Если значения m и n равны, то мы получим следующий результат: a n: a n = a n − n = a 0

Но при этом a n: a n = 1 - частное равных чисел a n и a . Выходит, что нулевая степень любого отличного от нуля числа равна единице.

Однако такое доказательство не подходит для нуля в нулевой степени. Для этого нам нужно другое свойство степеней – свойство произведений степеней с равными основаниями. Оно выглядит так: a m · a n = a m + n .

Если n у нас равен 0 , то a m · a 0 = a m (такое равенство также доказывает нам, что a 0 = 1 ). Но если а также равно нулю, наше равенство приобретает вид 0 m · 0 0 = 0 m , Оно будет верным при любом натуральном значении n , и неважно при этом, чему именно равно значение степени 0 0 , то есть оно может быть равно любому числу, и на верность равенства это не повлияет. Следовательно, запись вида 0 0 своего особенного смысла не имеет, и мы не будем ему его приписывать.

При желании легко проверить, что a 0 = 1 сходится со свойством степени (a m) n = a m · n при условии, что основание степени не равно нулю. Таким образом, степень любого отличного от нуля числа с нулевым показателем равна единице.

Пример 2

Разберем пример с конкретными числами: Так, 5 0 - единица, (33 , 3) 0 = 1 , - 4 5 9 0 = 1 , а значение 0 0 не определено.

После нулевой степени нам осталось разобраться, что из себя представляет степень отрицательная. Для этого нам понадобится то же свойство произведения степеней с равными основаниями, которое мы уже использовали выше: a m · a n = a m + n .

Введем условие: m = − n , тогда a не должно быть равно нулю. Из этого следует, что a − n · a n = a − n + n = a 0 = 1 . Выходит, что a n и a − n у нас являются взаимно обратными числами.

В итоге a в целой отрицательной степени есть не что иное, как дробь 1 a n .

Такая формулировка подтверждает, что для степени с целым отрицательным показателем действительны все те же свойства, которыми обладает степень с натуральным показателем (при условии, что основание не равно нулю).

Пример 3

Степень a с целым отрицательным показателем n можно представить в виде дроби 1 a n . Таким образом, a - n = 1 a n при условии a ≠ 0 и n – любое натуральное число.

Проиллюстрируем нашу мысль конкретными примерами:

Пример 4

3 - 2 = 1 3 2 , (- 4 . 2) - 5 = 1 (- 4 . 2) 5 , 11 37 - 1 = 1 11 37 1

В последней части параграфа попробуем изобразить все сказанное наглядно в одной формуле:

Определение 4

Степень числа a с натуральным показателем z ​​ – это: a z = a z , e с л и z - ц е л о е п о л о ж и т е л ь н о е ч и с л о 1 , z = 0 и a ≠ 0 , (п р и z = 0 и a = 0 п о л у ч а е т с я 0 0 , з н а ч е н и я в ы р а ж е н и я 0 0 н е о п р е д е л я е т с я)   1 a z , е с л и z - ц е л о е о т р и ц а т е л ь н о е ч и с л о и a ≠ 0 (е с л и z - ц е л о е о т р и ц а т е л ь н о е ч и с л о и a = 0 п о л у ч а е т с я 0 z , е г о з н а ч е н и е н е о п р е д е л я е т с я)

Что такое степени с рациональным показателем

Мы разобрали случаи, когда в показателе степени стоит целое число. Однако возвести число в степень можно и тогда, когда в ее показателе стоит дробное число. Это называется степенью с рациональным показателем. В этом пункте мы докажем, что она обладает теми же свойствами, что и другие степени.

Что такое рациональные числа? В их множество входят как целые, так и дробные числа, при этом дробные числа можно представить в виде обыкновенных дробей (как положительных, так и отрицательных). Сформулируем определение степени числа a с дробным показателем m / n , где n – натуральное число, а m – целое.

У нас есть некоторая степень с дробным показателем a m n . Для того, чтобы свойство степени в степени выполнялось, равенство a m n n = a m n · n = a m должно быть верным.

Учитывая определение корня n -ной степени и что a m n n = a m , мы можем принять условие a m n = a m n , если a m n имеет смысл при данных значениях m , n и a .

Приведенные выше свойства степени с целым показателем будут верными при условии a m n = a m n .

Основной вывод из наших рассуждений таков: степень некоторого числа a с дробным показателем m / n – это корень n -ой степени из числа a в степени m . Это справедливо в том случае, если при данных значениях m , n и a выражение a m n сохраняет смысл.

1. Мы можем ограничить значение основания степени: возьмем a , которое при положительных значениях m будет больше или равно 0 , а для отрицательных – строго меньше (поскольку при m ≤ 0 мы получаем 0 m , а такая степень не определена). В таком случае определение степени с дробным показателем будет выглядеть следующим образом:

Степень с дробным показателем m / n для некоторого положительного числа a есть корень n -ной степени из a, возведенного в степень m . В виде формулы это можно изобразить так:

Для степени с нулевым основанием это положение также подходит, но только в том случае, если ее показатель – положительное число.

Степень с нулевым основанием и дробным положительным показателем m / n можно выразить как

0 m n = 0 m n = 0 при условии целого положительного m и натурального n .

При отрицательном отношении m n < 0 степень не определяется, т.е. такая запись смысла не имеет.

Отметим один момент. Поскольку мы ввели условие, что a больше или равно нулю, то у нас оказались отброшены некоторые случаи.

Выражение a m n иногда все же имеет смысл при некоторых отрицательных значениях a и некоторых m . Так, верны записи (- 5) 2 3 , (- 1 , 2) 5 7 , - 1 2 - 8 4 , в которых основание отрицательно.

2. Второй подход – это рассмотреть отдельно корень a m n с четными и нечетными показателями. Тогда нам потребуется ввести еще одно условие: степень a , в показателе которой стоит сократимая обыкновенная дробь, считается степенью a , в показателе которой стоит соответствующая ей несократимая дробь. Позже мы объясним, для чего нам это условие и почему оно так важно. Таким образом, если у нас есть запись a m · k n · k , то мы можем свести ее к a m n и упростить расчеты.

Если n – нечетное число, а значение m – положительно, a – любое неотрицательное число, то a m n имеет смысл. Условие неотрицательного a нужно, поскольку корень четной степени из отрицательного числа не извлекают. Если же значение m положительно, то a может быть и отрицательным, и нулевым, т.к. корень нечетной степени можно извлечь из любого действительного числа.

Объединим все данные выше определения в одной записи:

Здесь m/n означает несократимую дробь, m – любое целое число, а n – любое натуральное число.

Определение 5

Для любой обыкновенной сократимой дроби m · k n · k степень можно заменить на a m n .

Степень числа a с несократимым дробным показателем m / n – можно выразить в виде a m n в следующих случаях: - для любых действительных a , целых положительных значений m и нечетных натуральных значений n . Пример: 2 5 3 = 2 5 3 , (- 5 , 1) 2 7 = (- 5 , 1) - 2 7 , 0 5 19 = 0 5 19 .

Для любых отличных от нуля действительных a , целых отрицательных значений m и нечетных значений n , например, 2 - 5 3 = 2 - 5 3 , (- 5 , 1) - 2 7 = (- 5 , 1) - 2 7

Для любых неотрицательных a , целых положительных значений m и четных n , например, 2 1 4 = 2 1 4 , (5 , 1) 3 2 = (5 , 1) 3 , 0 7 18 = 0 7 18 .

Для любых положительных a , целых отрицательных m и четных n , например, 2 - 1 4 = 2 - 1 4 , (5 , 1) - 3 2 = (5 , 1) - 3 , .

В случае других значений степень с дробным показателем не определяется. Примеры таких степеней: - 2 11 6 , - 2 1 2 3 2 , 0 - 2 5 .

Теперь объясним важность условия, о котором говорили выше: зачем заменять дробь с сократимым показателем на дробь с несократимым. Если бы мы этого не сделали бы, то получились бы такие ситуации, скажем, 6 / 10 = 3 / 5 . Тогда должно быть верным (- 1) 6 10 = - 1 3 5 , но - 1 6 10 = (- 1) 6 10 = 1 10 = 1 10 10 = 1 , а (- 1) 3 5 = (- 1) 3 5 = - 1 5 = - 1 5 5 = - 1 .

Определение степени с дробным показателем, которое мы привели первым, удобнее применять на практике, чем второе, поэтому мы будем далее пользоваться именно им.

Определение 6

Таким образом, степень положительного числа a с дробным показателем m / n определяется как 0 m n = 0 m n = 0 . В случае отрицательных a запись a m n не имеет смысла. Степень нуля для положительных дробных показателей m / n определяется как 0 m n = 0 m n = 0 , для отрицательных дробных показателей мы степень нуля не определяем.

В выводах отметим, что можно записать любой дробный показатель как в виде смешанного числа, так и в виде десятичной дроби: 5 1 , 7 , 3 2 5 - 2 3 7 .

При вычислении же лучше заменять показатель степени обыкновенной дробью и далее пользоваться определением степени с дробным показателем. Для примеров выше у нас получится:

5 1 , 7 = 5 17 10 = 5 7 10 3 2 5 - 2 3 7 = 3 2 5 - 17 7 = 3 2 5 - 17 7

Что такое степени с иррациональным и действительным показателем

Что такое действительные числа? В их множество входят как рациональные, так и иррациональные числа. Поэтому для того, чтобы понять, что такое степень с действительным показателем, нам надо определить степени с рациональными и иррациональными показателями. Про рациональные мы уже упоминали выше. Разберемся с иррациональными показателями пошагово.

Пример 5

Допустим, что у нас есть иррациональное число a и последовательность его десятичных приближений a 0 , a 1 , a 2 , . . . . Например, возьмем значение a = 1 , 67175331 . . . , тогда

a 0 = 1 , 6 , a 1 = 1 , 67 , a 2 = 1 , 671 , . . . , a 0 = 1 , 67 , a 1 = 1 , 6717 , a 2 = 1 , 671753 , . . .

Последовательности приближений мы можем поставить в соответствие последовательность степеней a a 0 , a a 1 , a a 2 , . . . . Если вспомнить, что мы рассказывали ранее о возведении чисел в рациональную степень, то мы можем сами подсчитать значения этих степеней.

Возьмем для примера a = 3 , тогда a a 0 = 3 1 , 67 , a a 1 = 3 1 , 6717 , a a 2 = 3 1 , 671753 , . . . и т.д.

Последовательность степеней можно свести к числу, которое и будет значением степени c основанием a и иррациональным показателем a . В итоге: степень с иррациональным показателем вида 3 1 , 67175331 . . можно свести к числу 6 , 27 .

Определение 7

Степень положительного числа a с иррациональным показателем a записывается как a a . Его значение – это предел последовательности a a 0 , a a 1 , a a 2 , . . . , где a 0 , a 1 , a 2 , . . . являются последовательными десятичными приближениями иррационального числа a . Степень с нулевым основанием можно определить и для положительных иррациональных показателей, при этом 0 a = 0 Так, 0 6 = 0 , 0 21 3 3 = 0 . А для отрицательных этого сделать нельзя, поскольку, например, значение 0 - 5 , 0 - 2 π не определено. Единица, возведенная в любую иррациональную степень, остается единицей, например, и 1 2 , 1 5 в 2 и 1 - 5 будут равны 1 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Видеоурок 2: Степень с натуральным показателем и ее свойства

Лекция:


Степень с натуральным показателем


Под степенью некоторого числа "а" с некоторым показателем "n" понимают произведение числа "а" само на себя "n" раз.

Когда говорят о степени с натуральным показателем, это означает, что число "n" должно быть целым и не отрицательным.

а - основание степени, которое показывает, какое число следует умножать само на себя,

n - показатель степени - он говорит, сколько раз основание нужно умножить само на себя.


Например:

8 4 = 8 * 8 * 8 * 8 = 4096.

В данном случае под основанием степени понимают число "8", показателем степени считается число "4", под значением степени понимается число "4096".

Самой большой и распространенной ошибкой при подсчете степени является умножение показателя на основание - ЭТО НЕ ВЕРНО!


Когда речь идет о степени с натуральным показателем, имеется в виду, что только показатель степени (n) должен быть натуральным числом.


В качестве основания можно брать любые числа с числовой прямой.


Например,

(-0,1) 3 = (-0,1) * (-0,1) * (-0,1) = (-0,001).

Математическое действие, которое совершается над основанием и показателем степени, называется возведение в степень.

Сложение \ вычитание - математические действия первой ступени, умножение \ деление - действие второй ступени, возведение степени - это математическое действие третьей ступени, то есть одной из высших.

Данная иерархия математических действий определяет порядок при расчете. Если данное действие встречается в задачах среди двух предыдущих, то оно делается в первую очередь.


Например:

15 + 6 *2 2 = 39

В данном примере необходимо сначала возвести 2 в степень, то есть

затем полученный результат умножить на 6, то есть

Степень с натуральным показателем используется не только для конкретных вычислений, но и для удобства записи больших чисел. В данном случае еще используется понятие "стандартный вид числа" . Данная запись подразумевает умножение некоторого числа от 1 до 9 на основание степени равное 10 с некоторым показателем степени.


Например , для записи радиуса Земли в стандартном виде используют следующую запись:

6400000 м = 6,4 * 10 6 м,

а масса Земли, например, записывается следующим образом:

Свойства степени

Для удобства решений примеров со степенями необходимо знать основные их свойства:


1. Если Вам необходимо умножить две степени, которые имеют одинаковые основания, то в таком случае основание необходимо оставить без изменения, а показатели сложить.

a n * a m = a n+m

Например:

5 2 * 5 4 = 5 6 .

2. Если необходимо разделить две степени, которые имеют одинаковые основания, то в таком случае основание необходимо оставить без изменения, а показатели вычесть. Обратите внимани, для действий со степенями с натуральным показателем показатель степени делимого должен быть больше показателя степени делителя. В противном случае, частным данного действия будет число с отрицательным показателем степени.

a n / a m = a n-m

Например,

5 4 * 5 2 = 5 2 .

3. Если необходимо возвести одну степень в другую, основанием результата останется то же число, а показатели степени перемножаются.

(a n) m = a n*m

Например,

4. Если в некоторую степень необходимо возвести произведение произвольных чисел, то можно воспользоваться неким распределительным законом, при котором получим произведение различных оснований в одной и той же степени.

(a * b) m = a m * b m

Например,

(5 * 8) 2 = 5 2 * 8 2 .


5. Аналогичное свойство можно применять для деления степеней, иначе говоря, для возведения обыкновенной двоби в степень.

(a / b) m = a m / b m

6. Любое число, которое возводится в показатель степени, равный единице, равно первоначальному числу.

а 1 = а

Например,

7. При возведении любого числа в степень с показателем ноль, результатом данного вычисления всегда будет единица.

а 0 = 1

Например ,





После того как определена степень числа , логично поговорить про свойства степени . В этой статье мы дадим основные свойства степени числа, при этом затронем все возможные показатели степени. Здесь же мы приведем доказательства всех свойств степени, а также покажем, как применяются эти свойства при решении примеров.

Навигация по странице.

Свойства степеней с натуральными показателями

По определению степени с натуральным показателем степень a n представляет собой произведение n множителей, каждый из которых равен a . Отталкиваясь от этого определения, а также используя свойства умножения действительных чисел , можно получить и обосновать следующие свойства степени с натуральным показателем :

  1. основное свойство степени a m ·a n =a m+n , его обобщение ;
  2. свойство частного степеней с одинаковыми основаниями a m:a n =a m−n ;
  3. свойство степени произведения (a·b) n =a n ·b n , его расширение ;
  4. свойство частного в натуральной степени (a:b) n =a n:b n ;
  5. возведение степени в степень (a m) n =a m·n , его обобщение (((a n 1) n 2) …) n k =a n 1 ·n 2 ·…·n k ;
  6. сравнение степени с нулем:
    • если a>0 , то a n >0 для любого натурального n ;
    • если a=0 , то a n =0 ;
    • если a<0 и показатель степени является четным числом 2·m , то a 2·m >0 , если a<0 и показатель степени есть нечетное число 2·m−1 , то a 2·m−1 <0 ;
  7. если a и b – положительные числа и a
  8. если m и n такие натуральные числа, что m>n , то при 00 справедливо неравенство a m >a n .

Сразу заметим, что все записанные равенства являются тождественными при соблюдении указанных условий, и их правые и левые части можно поменять местами. Например, основное свойство дроби a m ·a n =a m+n при упрощении выражений часто применяется в виде a m+n =a m ·a n .

Теперь рассмотрим каждое из них подробно.

    Начнем со свойства произведения двух степеней с одинаковыми основаниями, которое называют основным свойством степени : для любого действительного числа a и любых натуральных чисел m и n справедливо равенство a m ·a n =a m+n .

    Докажем основное свойство степени. По определению степени с натуральным показателем произведение степеней с одинаковыми основаниями вида a m ·a n можно записать как произведение . В силу свойств умножения полученное выражение можно записать как , а это произведение есть степень числа a с натуральным показателем m+n , то есть, a m+n . На этом доказательство завершено.

    Приведем пример, подтверждающий основное свойство степени. Возьмем степени с одинаковыми основаниями 2 и натуральными степенями 2 и 3 , по основному свойству степени можно записать равенство 2 2 ·2 3 =2 2+3 =2 5 . Проверим его справедливость, для чего вычислим значения выражений 2 2 ·2 3 и 2 5 . Выполняя возведение в степень , имеем 2 2 ·2 3 =(2·2)·(2·2·2)=4·8=32 и 2 5 =2·2·2·2·2=32 , так как получаются равные значения, то равенство 2 2 ·2 3 =2 5 - верное, и оно подтверждает основное свойство степени.

    Основное свойство степени на базе свойств умножения можно обобщить на произведение трех и большего числа степеней с одинаковыми основаниями и натуральными показателями. Так для любого количества k натуральных чисел n 1 , n 2 , …, n k справедливо равенство a n 1 ·a n 2 ·…·a n k =a n 1 +n 2 +…+n k .

    Например, (2,1) 3 ·(2,1) 3 ·(2,1) 4 ·(2,1) 7 = (2,1) 3+3+4+7 =(2,1) 17 .

    Можно переходить к следующему свойству степеней с натуральным показателем – свойству частного степеней с одинаковыми основаниями : для любого отличного от нуля действительного числа a и произвольных натуральных чисел m и n , удовлетворяющих условию m>n , справедливо равенство a m:a n =a m−n .

    Прежде чем привести доказательство этого свойства, обговорим смысл дополнительных условий в формулировке. Условие a≠0 необходимо для того, чтобы избежать деления на нуль, так как 0 n =0 , а при знакомстве с делением мы условились, что на нуль делить нельзя. Условие m>n вводится для того, чтобы мы не выходили за рамки натуральных показателей степени. Действительно, при m>n показатель степени a m−n является натуральным числом, в противном случае он будет либо нулем (что происходит при m−n ), либо отрицательным числом (что происходит при m

    Доказательство. Основное свойство дроби позволяет записать равенство a m−n ·a n =a (m−n)+n =a m . Из полученного равенства a m−n ·a n =a m и из следует, что a m−n является частным степеней a m и a n . Этим доказано свойство частного степеней с одинаковыми основаниями.

    Приведем пример. Возьмем две степени с одинаковыми основаниями π и натуральными показателями 5 и 2 , рассмотренному свойству степени отвечает равенство π 5:π 2 =π 5−3 =π 3 .

    Теперь рассмотрим свойство степени произведения : натуральная степень n произведения двух любых действительных чисел a и b равна произведению степеней a n и b n , то есть, (a·b) n =a n ·b n .

    Действительно, по определению степени с натуральным показателем имеем . Последнее произведение на основании свойств умножения можно переписать как , что равно a n ·b n .

    Приведем пример: .

    Данное свойство распространяется на степень произведения трех и большего количества множителей. То есть, свойство натуральной степени n произведения k множителей записывается как (a 1 ·a 2 ·…·a k) n =a 1 n ·a 2 n ·…·a k n .

    Для наглядности покажем это свойство на примере. Для произведения трех множителей в степени 7 имеем .

    Следующее свойство представляет собой свойство частного в натуральной степени : частное действительных чисел a и b , b≠0 в натуральной степени n равно частному степеней a n и b n , то есть, (a:b) n =a n:b n .

    Доказательство можно провести, используя предыдущее свойство. Так (a:b) n ·b n =((a:b)·b) n =a n , а из равенства (a:b) n ·b n =a n следует, что (a:b) n является частным от деления a n на b n .

    Запишем это свойство на примере конкретных чисел: .

    Теперь озвучим свойство возведения степени в степень : для любого действительного числа a и любых натуральных чисел m и n степень a m в степени n равна степени числа a с показателем m·n , то есть, (a m) n =a m·n .

    Например, (5 2) 3 =5 2·3 =5 6 .

    Доказательством свойства степени в степени является следующая цепочка равенств: .

    Рассмотренное свойство можно распространить на степень в степени в степени и т.д. Например, для любых натуральных чисел p , q , r и s справедливо равенство . Для большей ясности приведем пример с конкретными числами: (((5,2) 3) 2) 5 =(5,2) 3+2+5 =(5,2) 10 .

    Осталось остановиться на свойствах сравнения степеней с натуральным показателем.

    Начнем с доказательства свойства сравнения нуля и степени с натуральным показателем.

    Для начала обоснуем, что a n >0 при любом a>0 .

    Произведение двух положительных чисел является положительным числом, что следует из определения умножения. Этот факт и свойства умножения позволяют утверждать, что результат умножения любого числа положительных чисел также будет положительным числом. А степень числа a с натуральным показателем n по определению является произведением n множителей, каждый из которых равен a . Эти рассуждения позволяют утверждать, что для любого положительного основания a степень a n есть положительное число. В силу доказанного свойства 3 5 >0 , (0,00201) 2 >0 и .

    Достаточно очевидно, что для любого натурального n при a=0 степень a n есть нуль. Действительно, 0 n =0·0·…·0=0 . К примеру, 0 3 =0 и 0 762 =0 .

    Переходим к отрицательным основаниям степени.

    Начнем со случая, когда показатель степени является четным числом, обозначим его как 2·m , где m - натуральное. Тогда . По каждое из произведений вида a·a равно произведению модулей чисел a и a , значит, является положительным числом. Следовательно, положительным будет и произведение и степень a 2·m . Приведем примеры: (−6) 4 >0 , (−2,2) 12 >0 и .

    Наконец, когда основание степени a является отрицательным числом, а показатель степени есть нечетное число 2·m−1 , то . Все произведения a·a являются положительными числами, произведение этих положительных чисел также положительно, а его умножение на оставшееся отрицательное число a дает в итоге отрицательное число. В силу этого свойства (−5) 3 <0 , (−0,003) 17 <0 и .

    Переходим к свойству сравнения степеней с одинаковыми натуральными показателями, которое имеет следующую формулировку: из двух степеней с одинаковыми натуральными показателями n меньше та, основание которой меньше, а больше та, основание которой больше. Докажем его.

    Неравенство a n свойств неравенств справедливо и доказываемое неравенство вида a n .

    Осталось доказать последнее из перечисленных свойств степеней с натуральными показателями. Сформулируем его. Из двух степеней с натуральными показателями и одинаковыми положительными основаниями, меньшими единицы, больше та степень, показатель которой меньше; а из двух степеней с натуральными показателями и одинаковыми основаниями, большими единицы, больше та степень, показатель которой больше. Переходим к доказательству этого свойства.

    Докажем, что при m>n и 00 в силу исходного условия m>n , откуда следует, что при 0

    Осталось доказать вторую часть свойства. Докажем, что при m>n и a>1 справедливо a m >a n . Разность a m −a n после вынесения a n за скобки принимает вид a n ·(a m−n −1) . Это произведение положительно, так как при a>1 степень a n есть положительное число, и разность a m−n −1 есть положительное число, так как m−n>0 в силу начального условия, и при a>1 степень a m−n больше единицы. Следовательно, a m −a n >0 и a m >a n , что и требовалось доказать. Иллюстрацией этого свойства служит неравенство 3 7 >3 2 .

Свойства степеней с целыми показателями

Так как целые положительные числа есть натуральные числа, то все свойства степеней с целыми положительными показателями в точности совпадают со свойствами степеней с натуральными показателями, перечисленными и доказанными в предыдущем пункте.

Степень с целым отрицательным показателем , а также степень с нулевым показателем мы определяли так, чтобы оставались справедливыми все свойства степеней с натуральными показателями, выражаемые равенствами. Поэтому, все эти свойства справедливы и для нулевых показателей степени, и для отрицательных показателей, при этом, конечно, основания степеней отличны от нуля.

Итак, для любых действительных и отличных от нуля чисел a и b , а также любых целых чисел m и n справедливы следующие свойства степеней с целыми показателями :

  1. a m ·a n =a m+n ;
  2. a m:a n =a m−n ;
  3. (a·b) n =a n ·b n ;
  4. (a:b) n =a n:b n ;
  5. (a m) n =a m·n ;
  6. если n – целое положительное число, a и b – положительные числа, причем ab −n ;
  7. если m и n – целые числа, причем m>n , то при 01 выполняется неравенство a m >a n .

При a=0 степени a m и a n имеют смысл лишь когда и m , и n положительные целые числа, то есть, натуральные числа. Таким образом, только что записанные свойства также справедливы для случаев, когда a=0 , а числа m и n – целые положительные.

Доказать каждое из этих свойств не составляет труда, для этого достаточно использовать определения степени с натуральным и целым показателем, а также свойства действий с действительными числами. Для примера докажем, что свойство степени в степени выполняется как для целых положительных чисел, так и для целых неположительных чисел. Для этого нужно показать, что если p есть нуль или натуральное число и q есть нуль или натуральное число, то справедливы равенства (a p) q =a p·q , (a −p) q =a (−p)·q , (a p) −q =a p·(−q) и (a −p) −q =a (−p)·(−q) . Сделаем это.

Для положительных p и q равенство (a p) q =a p·q доказано в предыдущем пункте. Если p=0 , то имеем (a 0) q =1 q =1 и a 0·q =a 0 =1 , откуда (a 0) q =a 0·q . Аналогично, если q=0 , то (a p) 0 =1 и a p·0 =a 0 =1 , откуда (a p) 0 =a p·0 . Если же и p=0 и q=0 , то (a 0) 0 =1 0 =1 и a 0·0 =a 0 =1 , откуда (a 0) 0 =a 0·0 .

Теперь докажем, что (a −p) q =a (−p)·q . По определению степени с целым отрицательным показателем , тогда . По свойству частного в степени имеем . Так как 1 p =1·1·…·1=1 и , то . Последнее выражение по определению является степенью вида a −(p·q) , которую в силу правил умножения можно записать как a (−p)·q .

Аналогично .

И .

По такому же принципу можно доказать все остальные свойства степени с целым показателем, записанные в виде равенств.

В предпоследнем из записанных свойств стоит остановиться на доказательстве неравенства a −n >b −n , которое справедливо для любого целого отрицательного −n и любых положительных a и b , для которых выполняется условие a. Так как по условию a0 . Произведение a n ·b n тоже положительно как произведение положительных чисел a n и b n . Тогда полученная дробь положительна как частное положительных чисел b n −a n и a n ·b n . Следовательно, откуда a −n >b −n , что и требовалось доказать.

Последнее свойство степеней с целыми показателями доказывается так же, как аналогичное свойство степеней с натуральными показателями.

Свойства степеней с рациональными показателями

Степень с дробным показателем мы определяли, распространяя на нее свойства степени с целым показателем. Иными словами, степени с дробными показателями обладают теми же свойствами, что и степени с целыми показателями. А именно:

Доказательство свойств степеней с дробными показателями базируется на определении степени с дробным показателем, на и на свойствах степени с целым показателем. Приведем доказательства.

По определению степени с дробным показателем и , тогда . Свойства арифметического корня позволяют нам записать следующие равенства . Дальше, используя свойство степени с целым показателем, получаем , откуда по определению степени с дробным показателем имеем , а показатель полученной степени можно преобразовать так: . На этом доказательство завершено.

Абсолютно аналогично доказывается второе свойство степеней с дробными показателями:

По схожим принципам доказываются и остальные равенства:

Переходим к доказательству следующего свойства. Докажем, что для любых положительных a и b , a b p . Запишем рациональное число p как m/n , где m – целое число, а n – натуральное. Условиям p<0 и p>0 в этом случае будут эквивалентны условия m<0 и m>0 соответственно. При m>0 и a

Аналогично, при m<0 имеем a m >b m , откуда , то есть, и a p >b p .

Осталось доказать последнее из перечисленных свойств. Докажем, что для рациональных чисел p и q , p>q при 00 – неравенство a p >a q . Мы всегда можем привести к общему знаменателю рациональные числа p и q , пусть при этом мы получим обыкновенные дроби и , где m 1 и m 2 – целые числа, а n - натуральное. При этом условию p>q будет соответствовать условие m 1 >m 2 , что следует из . Тогда по свойству сравнения степеней с одинаковыми основаниями и натуральными показателями при 01 – неравенство a m 1 >a m 2 . Эти неравенства по свойствам корней можно переписать соответственно как и . А определение степени с рациональным показателем позволяет перейти к неравенствам и соответственно. Отсюда делаем окончательный вывод: при p>q и 00 – неравенство a p >a q .

Свойства степеней с иррациональными показателями

Из того, как определяется степень с иррациональным показателем , можно заключить, что она обладает всеми свойствами степеней с рациональными показателями. Так для любых a>0 , b>0 и иррациональных чисел p и q справедливы следующие свойства степеней с иррациональными показателями :

  1. a p ·a q =a p+q ;
  2. a p:a q =a p−q ;
  3. (a·b) p =a p ·b p ;
  4. (a:b) p =a p:b p ;
  5. (a p) q =a p·q ;
  6. для любых положительных чисел a и b , a0 справедливо неравенство a p b p ;
  7. для иррациональных чисел p и q , p>q при 00 – неравенство a p >a q .

Отсюда можно сделать вывод, что степени с любыми действительными показателями p и q при a>0 обладают этими же свойствами.

Список литературы.

  • Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. МатематикаЖ учебник для 5 кл. общеобразовательных учреждений.
  • Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Алгебра: учебник для 7 кл. общеобразовательных учреждений.
  • Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Алгебра: учебник для 8 кл. общеобразовательных учреждений.
  • Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Алгебра: учебник для 9 кл. общеобразовательных учреждений.
  • Колмогоров А.Н., Абрамов А.М., Дудницын Ю.П. и др. Алгебра и начала анализа: Учебник для 10 - 11 классов общеобразовательных учреждений.
  • Гусев В.А., Мордкович А.Г. Математика (пособие для поступающих в техникумы).

Основная цель

Ознакомить учащихся со свойствами степеней с натуральными показателями и научить выполнять действия со степенями.

Тема “ Степень и её свойства ” включает три вопроса:

  • Определение степени с натуральным показателем.
  • Умножение и деление степеней.
  • Возведение в степень произведения и степени.

Контрольные вопросы

  1. Сформулируйте определение степени с натуральным показателем, большим 1. Приведите пример.
  2. Сформулируйте определение степени с показателем 1. Приведите пример.
  3. Каков порядок выполнения действий при вычислении значения выражения, содержащего степени?
  4. Сформулируйте основное свойство степени. Приведите пример.
  5. Сформулируйте правило умножения степеней с одинаковыми основаниями. Приведите пример.
  6. Сформулируйте правило деления степеней с одинаковыми основаниями. Приведите пример.
  7. Сформулируйте правило возведения в степень произведения. Приведите пример. Докажите тождество (ab) n = a n b n .
  8. Сформулируйте правило возведения степени в степень. Приведите пример. Докажите тождество (а m) n = а m n .

Определение степени.

Степенью числа a с натуральным показателем n , большим 1, называется произведение n множителей, каждый из которых равен а . Степенью числа а с показателем 1 называется само число а .

Степень с основанием а и показателем n записывается так: а n . Читается “ а в степени n ”; “ n- я степень числа а ”.

По определению степени:

а 4 = а а а а

. . . . . . . . . . . .

Нахождение значения степени называют возведением в степень .

1. Примеры возведения в степень:

3 3 = 3 3 3 = 27

0 4 = 0 0 0 0 = 0

(-5) 3 = (-5) (-5) (-5) = -125

25 ; 0,09 ;

25 = 5 2 ; 0,09 = (0,3) 2 ; .

27 ; 0,001 ; 8 .

27 = 3 3 ; 0,001 = (0,1) 3 ; 8 = 2 3 .

4. Найти значения выражений:

а) 3 10 3 = 3 10 10 10 = 3 1000 = 3000

б) -2 4 + (-3) 2 = 7
2 4 = 16
(-3) 2 = 9
-16 + 9 = 7

Вариант 1

а) 0,3 0,3 0,3

в) b b b b b b b

г) (-х) (-х) (-х) (-х)

д) (ab) (ab) (ab)

2. Представьте в виде квадрата числа:

3. Представьте в виде куба числа:

4. Найти значения выражений:

в) -1 4 + (-2) 3

г) -4 3 + (-3) 2

д) 100 - 5 2 4

Умножение степеней.

Для любого числа а и произвольных чисел m и n выполняется:

a m a n = a m + n .

Доказательство:

Правило : При умножении степеней с одинаковыми основаниями основания оставляют прежним, а показатели степеней складывают.

a m a n a k = a m + n a k = a (m + n) + k = a m + n + k

а) х 5 х 4 = х 5 + 4 = х 9

б) y y 6 = y 1 y 6 = y 1 + 6 = y 7

в) b 2 b 5 b 4 = b 2 + 5 + 4 = b 11

г) 3 4 9 = 3 4 3 2 = 3 6

д) 0,01 0,1 3 = 0,1 2 0,1 3 = 0,1 5

а) 2 3 2 = 2 4 = 16

б) 3 2 3 5 = 3 7 = 2187

Вариант 1

1. Представить в виде степени:

а) х 3 х 4 е) х 2 х 3 х 4

б) а 6 а 2 ж) 3 3 9

в) у 4 у з) 7 4 49

г) а а 8 и) 16 2 7

д) 2 3 2 4 к) 0,3 3 0,09

2. Представить в виде степени и найти значение по таблице:

а) 2 2 2 3 в) 8 2 5

б) 3 4 3 2 г) 27 243

Деление степеней.

Для любого числа а0 и произвольных натуральных чисел m и n, таких, что m>n выполняется:

a m: a n = a m - n

Доказательство:

a m - n a n = a (m - n) + n = a m - n + n = a m

по определению частного:

a m: a n = a m - n .

Правило : При делении степеней с одинаковыми основаниями основание оставляют прежним, а из показателя степени делимого вычитают показатель степени делителя.

Определение: Степень числа а, не равного нулю, с нулевым показателем равна единице :

т.к. а n: a n = 1 при а0 .

а) х 4:х 2 = х 4 - 2 = х 2

б) у 8:у 3 = у 8 - 3 = у 5

в) а 7:а = а 7:а 1 = а 7 - 1 = а 6

г) с 5:с 0 = с 5:1 = с 5

а) 5 7:5 5 = 5 2 = 25

б) 10 20:10 17 = 10 3 = 1000

в)

г)

д)

Вариант 1

1. Представьте в виде степени частное:

2. Найдите значения выражений:

Возведение в степень произведения.

Для любых а и b и произвольного натурального числа n:

(ab) n = a n b n

Доказательство:

По определению степени

(ab) n =

Сгруппировав отдельно множители а и множители b, получим:

=

Доказанное свойство степени произведения распространяется на степень произведения трех и более множителей.

Например:

(a b c) n = a n b n c n ;

(a b c d) n = a n b n c n d n .

Правило : При возведении в степень произведения возводят в эту степень каждый множитель и результат перемножают.

1. Возвести в степень:

а) (a b) 4 = a 4 b 4

б) (2 х у) 3 =2 3 х 3 у 3 = 8 х 3 у 3

в) (3 а) 4 = 3 4 а 4 = 81 а 4

г) (-5 у) 3 = (-5) 3 у 3 = -125 у 3

д) (-0,2 х у) 2 = (-0,2) 2 х 2 у 2 = 0,04 х 2 у 2

е) (-3 a b c) 4 = (-3) 4 a 4 b 4 c 4 = 81 a 4 b 4 c 4

2. Найти значение выражения:

а) (2 10) 4 = 2 4 10 4 = 16 1000 = 16000

б) (3 5 20) 2 = 3 2 100 2 = 9 10000= 90000

в) 2 4 5 4 = (2 5) 4 = 10 4 = 10000

г) 0,25 11 4 11 = (0,25 4) 11 = 1 11 = 1

д)

Вариант 1

1. Возвести в степень:

б) (2 а с) 4

д) (-0,1 х у) 3

2. Найти значение выражения:

б) (5 7 20) 2

Возведение в степень степени.

Для любого числа а и произвольных натуральных чисел m и n:

(а m) n = а m n

Доказательство:

По определению степени

(а m) n =

Правило: При возведении степени в степень основание оставляют тем же, а показатели перемножают .

1. Возвести в степень:

(а 3) 2 = а 6 (х 5) 4 = х 20

(у 5) 2 = у 10 (b 3) 3 = b 9

2. Упростите выражения:

а) а 3 (а 2) 5 = а 3 а 10 = а 13

б) (b 3) 2 b 7 = b 6 b 7 = b 13

в) (х 3) 2 (х 2) 4 = х 6 х 8 = х 14

г) (у у 7) 3 = (у 8) 3 = у 24

а)

б)

Вариант 1

1. Возвести в степень:

а) (а 4) 2 б) (х 4) 5

в) (у 3) 2 г) (b 4) 4

2. Упростите выражения:

а) а 4 (а 3) 2

б) (b 4) 3 b 5+

в) (х 2) 4 (х 4) 3

г) (у у 9) 2

3. Найдите значение выражений:

Приложение

Определение степени.

Вариант 2

1ю Запишите произведение в виде степени:

а) 0,4 0,4 0,4

в) а а а а а а а а

г) (-у) (-у) (-у) (-у)

д) (bс) (bс) (bс)

2. Представьте в виде квадрата числа:

3. Представьте в виде куба числа:

4. Найти значения выражений:

в) -1 3 + (-2) 4

г) -6 2 + (-3) 2

д) 4 5 2 – 100

Вариант 3

1. Запишите произведение в виде степени:

а) 0,5 0,5 0,5

в) с с с с с с с с с

г) (-х) (-х) (-х) (-х)

д) (ab) (ab) (ab)

2. Представьте в виде квадрата числа: 100 ; 0,49 ; .

3. Представьте в виде куба числа:

4. Найти значения выражений:

в) -1 5 + (-3) 2

г) -5 3 + (-4) 2

д) 5 4 2 - 100

Вариант 4

1. Запишите произведение в виде степени:

а) 0,7 0,7 0,7

в) х х х х х х

г) (-а) (-а) (-а)

д) (bс) (bс) (bс) (bc)

2. Представьте в виде квадрата числа:

3. Представьте в виде куба числа:

4. Найти значения выражений:

в) -1 4 + (-3) 3

г) -3 4 + (-5) 2

д) 100 - 3 2 5

Умножение степеней.

Вариант 2

1. Представить в виде степени:

а) х 4 x 5 е) х 3 х 4 х 5

б) а 7 а 3 ж) 2 3 4

в) у 5 у з) 4 3 16

г) а а 7 и) 4 2 5

д) 2 2 2 5 к) 0,2 3 0,04

2. Представить в виде степени и найти значение по таблице:

а) 3 2 3 3 в) 16 2 3

б) 2 4 2 5 г) 9 81

Вариант 3

1. Представить в виде степени:

а) а 3 а 5 е) у 2 у 4 у 6

б) х 4 х 7 ж) 3 5 9

в) b 6 b з) 5 3 25

г) у у 8 и) 49 7 4

д) 2 3 2 6 к) 0,3 4 0,27

2. Представить в виде степени и найти значение по таблице:

а) 3 3 3 4 в) 27 3 4

б) 2 4 2 6 г) 16 64

Вариант 4

1. Представить в виде степени:

а) а 6 а 2 е) х 4 х х 6

б) х 7 х 8 ж) 3 4 27

в) у 6 у з) 4 3 16

г) х х 10 и) 36 6 3

д) 2 4 2 5 к) 0,2 2 0,008

2. Представить в виде степени и найти значение по таблице:

а) 2 6 2 3 в) 64 2 4

б) 3 5 3 2 г) 81 27

Деление степеней.

Вариант 2

1. Представьте в виде степени частное:

2. Найдите значения выражений.

Ранее мы уже говорили о том, что такое степень числа. Она имеет определенные свойства, полезные в решении задач: именно их и все возможные показатели степени мы разберем в этой статье. Также мы наглядно покажем на примерах, как их можно доказать и правильно применить на практике.

Yandex.RTB R-A-339285-1

Вспомним уже сформулированное нами ранее понятие степени с натуральным показателем: это произведение n -ного количества множителей, каждый из которых равен а. Также нам понадобится вспомнить, как правильно умножать действительные числа. Все это поможет нам сформулировать для степени с натуральным показателем следующие свойства:

Определение 1

1. Главное свойство степени: a m · a n = a m + n

Можно обобщить до: a n 1 · a n 2 · … · a n k = a n 1 + n 2 + … + n k .

2. Свойство частного для степеней, имеющих одинаковые основания: a m: a n = a m − n

3. Свойство степени произведения: (a · b) n = a n · b n

Равенство можно расширить до: (a 1 · a 2 · … · a k) n = a 1 n · a 2 n · … · a k n

4. Свойство частного в натуральной степени: (a: b) n = a n: b n

5. Возводим степень в степень: (a m) n = a m · n ,

Можно обобщить до: (((a n 1) n 2) …) n k = a n 1 · n 2 · … · n k

6. Сравниваем степень с нулем:

  • если a > 0 , то при любом натуральном n, a n будет больше нуля;
  • при a , равном 0 , a n также будет равна нулю;
  • при a < 0 и таком показателе степени, который будет четным числом 2 · m , a 2 · m будет больше нуля;
  • при a < 0 и таком показателе степени, который будет нечетным числом 2 · m − 1 , a 2 · m − 1 будет меньше нуля.

7. Равенство a n < b n будет справедливо для любого натурального n при условии, что a и b больше нуля и не равны друг другу.

8. Неравенство a m > a n будет верным при условии, что m и n – натуральные числа, m больше n и а больше нуля и меньше единицы.

В итоге мы получили несколько равенств; если соблюсти все условия, указанные выше, то они будут тождественными. Для каждого из равенств, например, для основного свойства, можно поменять местами правую и левую часть: a m · a n = a m + n - то же самое, что и a m + n = a m · a n . В таком виде оно часто используется при упрощении выражений.

1. Начнем с основного свойства степени: равенство a m · a n = a m + n будет верным при любых натуральных m и n и действительном a . Как доказать это утверждение?

Основное определение степеней с натуральными показателями позволит нам преобразовать равенство в произведение множителей. Мы получим запись такого вида:

Это можно сократить до (вспомним основные свойства умножения). В итоге мы получили степень числа a с натуральным показателем m + n . Таким образом, a m + n , значит, основное свойство степени доказано.

Разберем конкретный пример, подтверждающий это.

Пример 1

Итак, у нас есть две степени с основанием 2 . Их натуральные показатели - 2 и 3 соответственно. У нас получилось равенство: 2 2 · 2 3 = 2 2 + 3 = 2 5 Вычислим значения, чтобы проверить верность этого равенства.

Выполним необходимые математические действия: 2 2 · 2 3 = (2 · 2) · (2 · 2 · 2) = 4 · 8 = 32 и 2 5 = 2 · 2 · 2 · 2 · 2 = 32

В итоге у нас вышло: 2 2 · 2 3 = 2 5 . Свойство доказано.

В силу свойств умножения мы можем выполнить обобщение свойства, сформулировав его в виде трех и большего числа степеней, у которых показатели являются натуральными числами, а основания одинаковы. Если обозначить количество натуральных чисел n 1 , n 2 и др. буквой k , мы получим верное равенство:

a n 1 · a n 2 · … · a n k = a n 1 + n 2 + … + n k .

Пример 2

2. Далее нам необходимо доказать следующее свойство, которое называется свойством частного и присуще степеням с одинаковыми основаниями: это равенство a m: a n = a m − n , которое справедливо при любых натуральным m и n (причем m больше n)) и любом отличном от нуля действительном a .

Для начала поясним, каков именно смысл условий, которые упомянуты в формулировке. Если мы возьмем a, равное нулю, то в итоге у нас получится деление на нуль, чего делать нельзя (ведь 0 n = 0). Условие, чтобы число m обязательно было больше n , нужно для того, чтобы мы могли удержаться в рамках натуральных показателей степени: вычтя n из m , мы получим натуральное число. Если условие не будет соблюдено, у нас получится отрицательное число или ноль, и опять же мы выйдем за пределы изучения степеней с натуральными показателями.

Теперь мы можем перейти к доказательству. Из ранее изученного вспомним основные свойства дробей и сформулируем равенство так:

a m − n · a n = a (m − n) + n = a m

Из него можно вывести: a m − n · a n = a m

Вспомним про связь деления и умножения. Из него следует, что a m − n – частное степеней a m и a n . Это и есть доказательство второго свойства степени.

Пример 3

Подставим конкретные числа для наглядности в показатели, а основание степени обозначим π : π 5: π 2 = π 5 − 3 = π 3

3. Следующим мы разберем свойство степени произведения: (a · b) n = a n · b n при любых действительных a и b и натуральном n .

Согласно базовому определению степени с натуральным показателем мы можем переформулировать равенство так:

Вспомнив свойства умножения, запишем: . Это значит то же самое, что и a n · b n .

Пример 4

2 3 · - 4 2 5 4 = 2 3 4 · - 4 2 5 4

Если множителей у нас три и больше, то это свойство также распространяется и на этот случай. Введем для числа множителей обозначение k и запишем:

(a 1 · a 2 · … · a k) n = a 1 n · a 2 n · … · a k n

Пример 5

С конкретными числами получим следующее верное равенство: (2 · (- 2 , 3) · a) 7 = 2 7 · (- 2 , 3) 7 · a

4. После этого мы попробуем доказать свойство частного: (a: b) n = a n: b n при любых действительных a и b , если b не равно 0 , а n – натуральное число.

Для доказательства можно использовать предыдущее свойство степени. Если (a: b) n · b n = ((a: b) · b) n = a n , а (a: b) n · b n = a n , то из этого выходит, что (a: b) n есть частное от деления a n на b n .

Пример 6

Подсчитаем пример: 3 1 2: - 0 . 5 3 = 3 1 2 3: (- 0 , 5) 3

Пример 7

Начнем сразу с примера: (5 2) 3 = 5 2 · 3 = 5 6

А теперь сформулируем цепочку равенств, которая докажет нам верность равенства:

Если у нас в примере есть степени степеней, то это свойство справедливо для них также. Если у нас есть любые натуральные числа p , q , r , s , то верно будет:

a p q y s = a p · q · y · s

Пример 8

Добавим конкретики: (((5 , 2) 3) 2) 5 = (5 , 2) 3 + 2 + 5 = (5 , 2) 10

6. Еще одно свойство степеней с натуральным показателем, которое нам нужно доказать, – свойство сравнения.

Для начала сравним степень с нулем. Почему a n > 0 при условии, что а больше 0 ?

Если умножить одно положительное число на другое, то мы получим также положительное число. Зная этот факт, мы можем сказать, что от числа множителей это не зависит – результат умножения любого числа положительных чисел есть число положительное. А что же такое степень, как не результат умножения чисел? Тогда для любой степени a n с положительным основанием и натуральным показателем это будет верно.

Пример 9

3 5 > 0 , (0 , 00201) 2 > 0 и 34 9 13 51 > 0

Также очевидно, что степень с основанием, равным нулю, сама есть ноль. В какую бы степень мы не возводили ноль, он останется им.

Пример 10

0 3 = 0 и 0 762 = 0

Если основание степени – отрицательное число, тот тут доказательство немного сложнее, поскольку важным становится понятие четности/нечетности показателя. Возьмем для начала случай, когда показатель степени четный, и обозначим его 2 · m , где m – натуральное число.

Вспомним, как правильно умножать отрицательные числа: произведение a · a равно произведению модулей, а, следовательно, оно будет положительным числом. Тогда и степень a 2 · m также положительны.

Пример 11

Например, (− 6) 4 > 0 , (− 2 , 2) 12 > 0 и - 2 9 6 > 0

А если показатель степени с отрицательным основанием – нечетное число? Обозначим его 2 · m − 1 .

Тогда

Все произведения a · a , согласно свойствам умножения, положительны, их произведение тоже. Но если мы его умножим на единственное оставшееся число a , то конечный результат будет отрицателен.

Тогда получим: (− 5) 3 < 0 , (− 0 , 003) 17 < 0 и - 1 1 102 9 < 0

Как это доказать?

a n < b n – неравенство, представляющее собой произведение левых и правых частей nверных неравенств a < b . Вспомним основные свойства неравенств справедливо и a n < b n .

Пример 12

Например, верны неравенства: 3 7 < (2 , 2) 7 и 3 5 11 124 > (0 , 75) 124

8. Нам осталось доказать последнее свойство: если у нас есть две степени, основания которых одинаковы и положительны, а показатели являются натуральными числами, то та из них больше, показатель которой меньше; а из двух степеней с натуральными показателями и одинаковыми основаниями, большими единицы, больше та степень, показатель которой больше.

Докажем эти утверждения.

Для начала нам нужно убедиться, что a m < a n при условии, что m больше, чем n , и а больше 0 , но меньше 1 .Теперь сравним с нулем разность a m − a n

Вынесем a n за скобки, после чего наша разность примет вид a n · (a m − n − 1) . Ее результат будет отрицателен (поскольку отрицателен результат умножения положительного числа на отрицательное). Ведь согласно начальным условиям, m − n > 0 , тогда a m − n − 1 –отрицательно, а первый множитель положителен, как и любая натуральная степень с положительным основанием.

У нас вышло, что a m − a n < 0 и a m < a n . Свойство доказано.

Осталось привести доказательство второй части утверждения, сформулированного выше: a m > a справедливо при m > n и a > 1 . Укажем разность и вынесем a n за скобки: (a m − n − 1) .Степень a n при а, большем единицы, даст положительный результат; а сама разность также окажется положительна в силу изначальных условий, и при a > 1 степень a m − n больше единицы. Выходит, a m − a n > 0 и a m > a n , что нам и требовалось доказать.

Пример 13

Пример с конкретными числами: 3 7 > 3 2

Основные свойства степеней с целыми показателями

Для степеней с целыми положительными показателями свойства будут аналогичны, потому что целые положительные числа являются натуральными, а значит, все равенства, доказанные выше, справедливы и для них. Также они подходят и для случаев, когда показатели отрицательны или равны нулю (при условии, что само основание степени ненулевое).

Таким образом, свойства степеней такие же для любых оснований a и b (при условии, что эти числа действительны и не равны 0) и любых показателей m и n (при условии, что они являются целыми числами). Запишем их кратко в виде формул:

Определение 2

1. a m · a n = a m + n

2. a m: a n = a m − n

3. (a · b) n = a n · b n

4. (a: b) n = a n: b n

5. (a m) n = a m · n

6. a n < b n и a − n > b − n при условии целого положительного n , положительных a и b , a < b

7. a m < a n , при условии целых m и n , m > n и 0 < a < 1 , при a > 1 a m > a n .

Если основание степени равно нулю, то записи a m и a n имеют смысл только лишь в случае натуральных и положительных m и n . В итоге получим, что формулировки выше подходят и для случаев со степенью с нулевым основанием, если соблюдаются все остальные условия.

Доказательства этих свойств в данном случае несложные. Нам потребуется вспомнить, что такое степень с натуральным и целым показателем, а также свойства действий с действительными числами.

Разберем свойство степени в степени и докажем, что оно верно и для целых положительных, и для целых неположительных чисел. Начнем с доказательства равенств (a p) q = a p · q , (a − p) q = a (− p) · q , (a p) − q = a p · (− q) и (a − p) − q = a (− p) · (− q)

Условия: p = 0 или натуральное число; q – аналогично.

Если значения p и q больше 0 , то у нас получится (a p) q = a p · q . Схожее равенство мы уже доказывали раньше. Если p = 0 , то:

(a 0) q = 1 q = 1 a 0 · q = a 0 = 1

Следовательно, (a 0) q = a 0 · q

Для q = 0 все точно так же:

(a p) 0 = 1 a p · 0 = a 0 = 1

Итог: (a p) 0 = a p · 0 .

Если же оба показателя нулевые, то (a 0) 0 = 1 0 = 1 и a 0 · 0 = a 0 = 1 , значит, (a 0) 0 = a 0 · 0 .

Вспомним доказанное выше свойство частного в степени и запишем:

1 a p q = 1 q a p q

Если 1 p = 1 · 1 · … · 1 = 1 и a p q = a p · q , то 1 q a p q = 1 a p · q

Эту запись мы можем преобразовать в силу основных правил умножения в a (− p) · q .

Так же: a p - q = 1 (a p) q = 1 a p · q = a - (p · q) = a p · (- q) .

И (a - p) - q = 1 a p - q = (a p) q = a p · q = a (- p) · (- q)

Остальные свойства степени можно доказать аналогичным образом, преобразовав имеющиеся неравенства. Подробно останавливаться мы на этом не будем, укажем только сложные моменты.

Доказательство предпоследнего свойства: вспомним, a − n > b − n верно для любых целых отрицательных значений nи любых положительных a и b при условии, что a меньше b .

Тогда неравенство можно преобразовать следующим образом:

1 a n > 1 b n

Запишем правую и левую части в виде разности и выполним необходимые преобразования:

1 a n - 1 b n = b n - a n a n · b n

Вспомним, что в условии a меньше b , тогда, согласно определению степени с натуральным показателем: - a n < b n , в итоге: b n − a n > 0 .

a n · b n в итоге дает положительное число, поскольку его множители положительны. В итоге мы имеем дробь b n - a n a n · b n , которая в итоге также дает положительный результат. Отсюда 1 a n > 1 b n откуда a − n > b − n , что нам и нужно было доказать.

Последнее свойство степеней с целыми показателями доказывается аналогично свойству степеней с показателями натуральными.

Основные свойства степеней с рациональными показателями

В предыдущих статьях мы разбирали, что такое степень с рациональным (дробным) показателем. Их свойства такие же, что и у степеней с целыми показателями. Запишем:

Определение 3

1. a m 1 n 1 · a m 2 n 2 = a m 1 n 1 + m 2 n 2 при a > 0 , а если m 1 n 1 > 0 и m 2 n 2 > 0 , то при a ≥ 0 (свойство произведения степеней с одинаковыми основаниями).

2. a m 1 n 1: b m 2 n 2 = a m 1 n 1 - m 2 n 2 , если a > 0 (свойство частного).

3. a · b m n = a m n · b m n при a > 0 и b > 0 , а если m 1 n 1 > 0 и m 2 n 2 > 0 , то при a ≥ 0 и (или) b ≥ 0 (свойство произведения в дробной степени).

4. a: b m n = a m n: b m n при a > 0 и b > 0 , а если m n > 0 , то при a ≥ 0 и b > 0 (свойство частного в дробной степени).

5. a m 1 n 1 m 2 n 2 = a m 1 n 1 · m 2 n 2 при a > 0 , а если m 1 n 1 > 0 и m 2 n 2 > 0 , то при a ≥ 0 (свойство степени в степени).

6. a p < b p при условии любых положительных a и b , a < b и рациональном p при p > 0 ; если p < 0 - a p > b p (свойство сравнения степеней с равными рациональными показателями).

7. a p < a q при условии рациональных чисел p и q , p > q при 0 < a < 1 ; если a > 0 – a p > a q

Для доказательства указанных положений нам понадобится вспомнить, что такое степень с дробным показателем, каковы свойства арифметического корня n -ной степени и каковы свойства степени с целыми показателем. Разберем каждое свойство.

Согласно тому, что из себя представляет степень с дробным показателем, получим:

a m 1 n 1 = a m 1 n 1 и a m 2 n 2 = a m 2 n 2 , следовательно, a m 1 n 1 · a m 2 n 2 = a m 1 n 1 · a m 2 n 2

Свойства корня позволят нам вывести равенства:

a m 1 · m 2 n 1 · n 2 · a m 2 · m 1 n 2 · n 1 = a m 1 · n 2 · a m 2 · n 1 n 1 · n 2

Из этого получаем: a m 1 · n 2 · a m 2 · n 1 n 1 · n 2 = a m 1 · n 2 + m 2 · n 1 n 1 · n 2

Преобразуем:

a m 1 · n 2 · a m 2 · n 1 n 1 · n 2 = a m 1 · n 2 + m 2 · n 1 n 1 · n 2

Показатель степени можно записать в виде:

m 1 · n 2 + m 2 · n 1 n 1 · n 2 = m 1 · n 2 n 1 · n 2 + m 2 · n 1 n 1 · n 2 = m 1 n 1 + m 2 n 2

Это и есть доказательство. Второе свойство доказывается абсолютно так же. Запишем цепочку равенств:

a m 1 n 1: a m 2 n 2 = a m 1 n 1: a m 2 n 2 = a m 1 · n 2: a m 2 · n 1 n 1 · n 2 = = a m 1 · n 2 - m 2 · n 1 n 1 · n 2 = a m 1 · n 2 - m 2 · n 1 n 1 · n 2 = a m 1 · n 2 n 1 · n 2 - m 2 · n 1 n 1 · n 2 = a m 1 n 1 - m 2 n 2

Доказательства остальных равенств:

a · b m n = (a · b) m n = a m · b m n = a m n · b m n = a m n · b m n ; (a: b) m n = (a: b) m n = a m: b m n = = a m n: b m n = a m n: b m n ; a m 1 n 1 m 2 n 2 = a m 1 n 1 m 2 n 2 = a m 1 n 1 m 2 n 2 = = a m 1 m 2 n 1 n 2 = a m 1 · m 2 n 1 n 2 = = a m 1 · m 2 n 2 · n 1 = a m 1 · m 2 n 2 · n 1 = a m 1 n 1 · m 2 n 2

Следующее свойство: докажем, что для любых значений a и b больше 0 , если а меньше b , будет выполняться a p < b p , а для p больше 0 - a p > b p

Представим рациональное число p как m n . При этом m –целое число, n –натуральное. Тогда условия p < 0 и p > 0 будут распространяться на m < 0 и m > 0 . При m > 0 и a < b имеем (согласно свойству степени с целым положительным показателем), что должно выполняться неравенство a m < b m .

Используем свойство корней и выведем: a m n < b m n

Учитывая положительность значений a и b , перепишем неравенство как a m n < b m n . Оно эквивалентно a p < b p .

Таким же образом при m < 0 имеем a a m > b m , получаем a m n > b m n значит, a m n > b m n и a p > b p .

Нам осталось привести доказательство последнего свойства. Докажем, что для рациональных чисел p и q , p > q при 0 < a < 1 a p < a q , а при a > 0 будет верно a p > a q .

Рациональные числа p и q можно привести к общему знаменателю и получить дроби m 1 n и m 2 n

Здесь m 1 и m 2 – целые числа, а n – натуральное. Если p > q , то m 1 > m 2 (учитывая правило сравнения дробей). Тогда при 0 < a < 1 будет верно a m 1 < a m 2 , а при a > 1 – неравенство a 1 m > a 2 m .

Их можно переписать в следующем виде:

a m 1 n < a m 2 n a m 1 n > a m 2 n

Тогда можно сделать преобразования и получить в итоге:

a m 1 n < a m 2 n a m 1 n > a m 2 n

Подводим итог: при p > q и 0 < a < 1 верно a p < a q , а при a > 0 – a p > a q .

Основные свойства степеней с иррациональными показателями

На такую степень можно распространить все описанные выше свойства, которыми обладает степень с рациональными показателями. Это следует из самого ее определения, которое мы давали в одной из предыдущих статей. Сформулируем кратко эти свойства (условия: a > 0 , b > 0 , показатели p и q – иррациональные числа):

Определение 4

1. a p · a q = a p + q

2. a p: a q = a p − q

3. (a · b) p = a p · b p

4. (a: b) p = a p: b p

5. (a p) q = a p · q

6. a p < b p верно при любых положительных a и b , если a < b и p – иррациональное число больше 0 ; если p меньше 0 , то a p > b p

7. a p < a q верно, если p и q – иррациональные числа, p < q , 0 < a < 1 ; если a > 0 , то a p > a q .

Таким образом, все степени, показатели которых p и q являются действительными числами, при условии a > 0 обладают теми же свойствами.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter