Теория, эволюция и теория эволюции. Эволюционное учение Мутации не задают направление эволюции

Конспект урока по биологии в 11 классе по теме «Развитие эволюционного учения Ч. Дарвина».

Нужно: «учиться, чтобы жить» и «жить, чтобы учиться».

Цель: изучение сущности естественного отбора и борьбы за существование как основных факторов эволюции.

Познакомить учащихся с историей формирования и развития эволюционных идей;

Рассмотреть предпосылки возникновения эволюционной теории, познакомить учащихся с взглядами К. Линнея, Ж.Б.Ламарка, Ж. Кювье, К.Бэра, Ч. Лайеля;

Раскрыть основные положения эволюционной теории Чарльза Дарвина.

Тип урока: комбинированный. Оборудование: портреты ученых, карточки для закрепления изученного материала.

I Организационный момент:

II Актуализация знаний учащихся:

1.Как вы понимаете, что такое эволюция?(ответы детей)

III Изучение нового материала:

Слайд № 1

С высказыванием древнегреческого философа Гераклита. «Все есть и не есть, потому что хотя и настанет момент, когда оно есть, но оно тут же перестает быть… Однако и то же и молодо и старо, и мертво и живо, то изменяется в это, это, изменяясь, снова становится тем».

Учитель: Прочитайте высказывание древнегреческого философа Гераклита. Как вы понимаете эти слова?

На уроке мы будем говорить о развитии эволюционного учения Чарльза Дарвина.

Слайд № 2

На слайде вы видите задачи нашего урока.

Познакомить с историей формирования и развития эволюционных идей;

Рассмотреть предпосылки возникновения эволюционной теории;

Познакомить учащихся с работами Ж-Б Ламарка и других ученых.

Раскрыть основные положения эволюционной теории Ч. Дарвина.

Основной труд Чарльза Дарвина « Происхождение видов» в корне изменивший представление о живой природе, появился в 1859 году. Этому событию предшествовала более чем двадцатилетняя работа по изучению и осмыслению богатого фактического материала, собранного как самим Дарвином, так и другими учеными. Сегодня мы поговорим с основными предпосылками эволюционных представлений, первой эволюционной теорией Жана Батиста Ламарка, узнаете о теории Чарльза Дарвина об искусственном и естественном отборе.

Основные понятия урока.

Запишите основные понятия, которые вы должны усвоить на уроке.

Эволюция

Наследственная изменчивость

Естественный отбор

Искусственный отбор

Борьба за существование

Слайд № 4

Портрет Ч.Дарвина и цитата « Чем больше мы познаем неизменные законы природы, тем больше невероятными становятся для нас чудеса».

Слайд № 5

Чарльз Дарвин.

Английский ученый натуралист и путешественник. Одним из первых осознал и наглядно продемонстрировал, что все виды живых организмов эволюционируют во времени от общих предков. В своей теории основной движущей силой эволюции Дарвин назвал естественный отбор и неопределенную изменчивость. Идеи и открытия Дравина формируют фундамент современной теории эволюции и составляют основу биологии.

Учитель: Проследим основные пути формирование мировоззрения Дарвина и его систему доказательств.

Учитель: Термин « эволюция» (от латинского evolution- развертывание) ввел в XVIII веке швейцарский натуралист Шарль Боннэ.

Под эволюцией в биологии понимают необратимое историческое развитие природы. В биологии эволюция рассматривается как сила. ведущая к образованию новых форм организмов, как процесс, благодаря которому доклеточные формы жизни, возникшие более 3 млрд лет назад, дали начало исключительно сложным многоклеточным организмам нашего времени.

Слайд № 8

(портрет К. Линнея) Система органической природы К. Линнея (1707-1778)- шведского естествоиспытателя.

Учитель: Потребность в упорядочении быстро накапливающихся знаний привела к необходимости систематизировать их. Большой вклад в создание системы природы внес выдающийся шведский естествоиспытатель Карл Линней. Ученый описал более 8000 видов растений и свыше 4000 видов животных, установил единообразную терминологию и порядок описания видов.

За единицу классификации он принял вид- совокупность особей, сходных по строению.

Выделил три царства: Растения, Животные и Минералы.

Установил единообразную терминологию.

Закрепил использование в науке бинарной (т.е. двойной) номенклатуры для обозначения видов. Каждый вид обозначается двумя словами. Например: Кошка домашняя (ливийская).

Установил принцип соподчиненности: соседние категории связаны не только сходством, но и родством, но чем дальше друг от друга находятся категории, тем меньше степень их родства.

Ошибочность его теории:

Видов столько, сколько создал Творец.

Ученый во многих случаях правильно объединил виды организмов по сходству их строения. Однако произвольность в выборе признаков для классификации привела Линнея к ряду ошибок. Он сознавал искусственность своей системы и указывал на необходимость разработки естественной системы природы.

Учитель: Основы первого учения об эволюции органического мира были разработаны и опубликованы в труде французского естествоиспытателя Жаном Батистом Ламарком.

Эволюционная теория Ж.Б. Ламарка.

(1744-1829) Основы первого учения об эволюции органического мира были разработаны и опубликованы в труде « Философия зоологии» в 1809г. французским естествоиспытателем Жаном Батистом Ламарком

Жан Батист Ламарк.

Эволюционная идея тщательно разработана, подкреплена многочисленными фактами, превращается в теорию.

Приводит доказательства изменяемости видов.

Ошибочные механизмы изменчивости:

1)стремление организмов к совершенствованию;

2) прямое влияние внешней среды и наследование признаков, приобретенных в течение жизни организма.

Учитель: В биологии был сделан ряд крупных открытий, которые оказались несовместимыми с представлениями о неизменяемости природы, об отсутствии родства между ними.

Портрет Жоржа Кювье - французского ученого (1769-1832)

Жорж Кювье.

Исследовал органы позвоночных;

Установил:

Все органы представляют собой части одной целостной системы;

Ни одна часть тела не может изменяться без соответствующего изменения других частей;

Установил, что вымирание древних животных и растений могло быть следствием крупных катастроф геологического характера.

Слайд 13 - Карл Бэр - российский ученый (1792-1876)

Впервые описал процесс возникновения тканей и органов в ходе развития эмбриона.

Сформулировал закон зародышевого сходства:

«Сходство зародышей разных систематических групп свидетельствуют об общности их происхождения»

Чарльз Лайель - английский ученый (1797-1876)

Удалось расшифровать и датировать геологическую историю Земли.

Показал, что горообразование, вулканизм, оледенения, потоки, дождь, ветер, приливы, объясняют изменения земной поверхности, а значит и изменения в составе органического мира.

Учитель: Великий английский ученый Чарльз Дарвин разработал научную теорию об эволюции живой природы путем естественного отбора на основе синтеза огромного количества фактов из различных областей науки и сельскохозяйственной практики.

Предпосылки возникновения эволюционной теории Дарвина.

1)Социально-экономические.

2)Научные.

Социально- экономические предпосылки.

Развитие промышленности в Англии, интенсивный рост городов. Развитие колоний, бурное развитие селекций, выведение новых сортов растений и животных, проведение многочисленных научных экспедиций.

Научные предпосылки.

Успехи систематики растений и животных, развитие биогеографии, сравнительной анатомии, эмбриологии и палеонтологии, появление клеточной теории и эволюционного учения Ламарка.

Учитель: Эволюционная теория Дарвина представляет собой целостное учение о развитии органического мира.

Основные положения эволюционного учения Чарльза Дарвина.

Любой вид растений и животных в природе стремится к размножению в геометрической прогрессии. В природе происходит непрерывная борьба за существование. В борьбе за существование выживают и оставляют потомство особи, обладающие таким комплексом признаков и свойств, который, позволяет наиболее успешно конкурировать с другими. Движущей силой изменения видов является естественный отбор.

Учитель: В эволюционной теории Дарвина предпосылкой эволюции является наследственная изменчивость, а движущими силами эволюции - борьба за существование и естественный отбор.

Это изменения признаков организма, обусловленные изменением генотипа.

Комбинативная - в результате перекомбинации хромосом в процессе полового размножения.

Мутационная - возникает в результате внезапного изменения состояния генов. Характер случайный, ненаправленный.

Наследственная изменчивость (неопределенная)

Наследственная изменчивость и производимый человеком отбор представляют собой движущие силы эволюции.

Однако свойства, полезные с точки зрения человека, могут оказаться бесполезными и даже вредными в борьбе за жизнь, происходящей в дикой природе.

Учение Дарвина об искусственном отборе.

Искусственный отбор - это процесс создания новых пород животных и сортов культурных растений путем сохранения и размножения особей с определенными, ценными для человека признаками и свойствами в ряду поколений.

Формы искусственного отбора.

1.Сознательный (методический).

2.Бессознательный.

Признаки, накапливаемые при искусственном отборе, полезны для человека, но необязательно выгодны для животных.

Сознательный.

(Методический) искусственный отбор.

При методическом отборе селекционер ведет отбор по одному- двум признакам.

Условия успеха методического искусственного отбора- большое исходное число особей.

Бессознательный искусственный отбор.

Человеком не ставилось цели вывести определенную породу или сорт.

Например: убивали или съедали в первую очередь худших животных, а сохранялись при этом наиболее ценные.

Учение Дарвина о естественном отборе.

В результате борьбы за существование происходит естественный отбор - «Сохранение благоприятных индивидуальных различий и уничтожение вредных».

Накапливаются признаки, полезные только для организма в целом, в результате чего образуются виды и разновидности.

IV. Закрепление изученного материала.

Учитель:Работа по карточкам

Задание № 1

Какие утверждения верны:

1. Ламарк создал лучшую искусственную систему(-)

2. Линней считал, что виды существуют и не изменяются(+)

3. Ламарк создал первую эволюционную теорию.

4. Ламарк считал, что организмы изменяются от простого к сложному(+)

5.Ламарк отрицал изменчивость видов(-)

6.Линней разделил всех животных на 5 классов(-)

7.Ламарк считал, что все признаки, приобретенные в течение жизни, наследуются потомками(+)

8. Линней закрепил использование бинарной номенклатуры (двойных названий) для вида(+)

Домашнее задание:

Ответить устно на вопросы.

1.Как Ж.-Б. Ламарк объяснял многообразие видов в природе?

2.Какие предпосылки послужили толчком к созданию эволюционной теории?

3.В чем состоят основные положения учения Дарвина?

Словарь терминов

Адаптивная зона - совокупность экологических ниш, приурочена к определенному типу местообитаний (море, суша и т. д.), занятых видами, сходными в основных способах использования ресурсов внешней среды.

Адаптируемость - генетически обусловленная способность филетической линии к выживанию в условиях медленно изменяющейся среды.

Аддитивная модель наследования - модель, в соответствии с которой значение количественного признака определяется суммой вкладов отдельных генов.

Аллель - любое из альтернативных состояний одного пена (локуса).

Аллометрический рост - непропорциональный рост отдельных частей организма.

Амфидиплоид - организм с двумя диплоидными хромосомными наборами, происходящими от разных видов.

Анаболия - по А.Н. Северцову, добавление новой стадии на завершающем этапе онтогенетического развития органа.

Биомасса вида (популяции ) - общая масса всех особей вида (популяции).

Вид - совокупность популяций, генофонды которых объединены генным потоком. Внутривидовое разнообразие аллелей генных локусов относительно невелико, поэтому особи одного вида имеют сходные требования к среде, как правило, близки по фенотипу и дают плодовитое потомство.

Видообразование - преобразование одного вида (старого) в другой (новый), при котором вид-потомок переходит в соседнюю экологическую нишу. Процесс обычно сопряжен с заметным изменением фенотипа особей и возникновением репродуктивной изоляции между представителями нового и старого видов.

Гамета - мужская или женская половая клетка, несущая половинный по сравнению с соматическими клетками набор хромосом.

Ген - наследственный фактор, наделяющий организм одной молекулярной (элементарной) функцией.

Генетическая сложность (структуры) - число генов, участвующих в программе развития рабочей структуры.

Генетический груз - уменьшение приспособленности популяции за счет присутствия в ее генофонде аллелей, снижающих долю их носителей в следующем поколении.

Генный поток - перенос аллелей по территории ареала вида за счет перемещения особей или их гамет.

Геном - совокупность генов организма.

Генотип - конкретная комбинация генов (аллелей) генома.

Генофонд - совокупность всех имеющихся в популяции аллелей генов генома.

Гены домашнего хозяйства - гены, контролирующие биохимические процессы, протекающие в любом типе клеток.

Гены межклеточного взаимодействия - гены, контролирующие синтез продуктов, необходимых организму в целом (например, гормонов).

Гетерозигота - особь, несущая два разных аллеля одного гена (локуса).

Гомозигота - особь, несущая два идентичных аллеля в одном локусе.

Гомологичные органы - органы, для которых доказано общее эволюционное происхождение.

Движущий отбор - естественный отбор , благоприятствующий мутациям, изменяющим некоторый признак организма в определенном направлении.

Динамический прогресс - прогресс, связанный с повышением скорости потребления энергии среды каждой единицей биомассы популяции.

Дрейф генов - изменение алллельных частот в генофонде популяции за счет случайного характера формирования конечного числа зигот из гаметного фонда.

Зигота - оплодотворенная яйцеклетка - продукт слияния мужской и женской гамет, начальная стадия индивидуального развития многоклеточного организма.

Инбридинг - близкородственное скрещивание. Ведет к уменьшению аллельного разнообразия по всем локусам.

Клеточная дифференцировка - устойчивое состояние клетки, основанное на необратимой инактивации части генов генома.

Кладогенез - ветвление филетических линий.

Клон - совокупность организмов, возникшая в результате бесполого размножения одной особи-основательницы.

Количественные признаки - измеряемые признаки, имеющие непрерывный характер изменчивости.

Кроссинговер - обмен гомологичными участками хромосом.

Кроссоверная рекомбинация - перегруппировка родительских аллелей при мейозе вследствие кроссинговера.

Леталь - мутация, снижающая (обычно в гомозиготном состоянии) приспособленность ее носителя не менее, чем на порядок.

Лопастная линия (сутура) аммоноидей - линия срастания поперечной перегородки с внутренней стенкой раковины.

Макроэволюция - эволюционные процессы, действующие на протяжении многих миллионов лет и приводящие к формированию таксонов выше видового ранга (родов, семейств и т. д.).

Мейоз - механизм клеточного деления, обеспечивающий попадание в одну гамету только одного аллельного варианта каждого гена.

Микроэволюция - эволюционные процессы, происходящие внутри популяций, в основном сводящиеся к изменениям аллельных частот.

Мобилизующий отбор - отбор, действующий среди филетических линий, направленный на повышение мобильности какого-либо признака, следствие повторяющегося действия движущего отбора по данному признаку.

Мобильность - максимальная скорость эволюционного преобразования мощности рабочей структуры под действием направленного отбора определенного давления.

Модификационная изменчивость - ненаследственная форма изменчивости.

Морфофизиологический прогресс (ароморфоз ) - по А.Н. Северцову, повышение степени морфологической дифференциации организма при интенсификации его функций, что ведет к повышению общего уровня энергии жизнедеятельности.

Мощность метаболизма - скорость потребления энергии особью.

Мощность рабочей структуры - объем работы, выполняемый за единицу времени в режиме максимальной нагрузки. Если рабочая структура не выполняет активной работы, то мощностью считается способность уравновешивать максимальные нагрузки со стороны внешних или внутренних факторов.

Мультипликативная модель наследования - модель, предполагающая, что значение количественного признака является произведением вкладов отдельных генов.

Мутация - наследуемое изменение генетического материала.

Наследуемость - доля генетического компонента в полной фенотипической изменчивости (дисперсии) популяции.

Нейтральные аллели - аллели, «не различаемые» естественным отбором.

Ортогенез - антидарвинистская концепция, утверждающая, что эволюция организмов идет в определенном направлении под действием гипотетических внутренних факторов.

Ортоселекция - отбор, направленный на развитие какого-либо признака, который полезен в большинстве эволюционных ситуаций.

Основные функции - минимальный набор функций, обеспечивающий неопределенно долгое существование биологической системы. К ним относятся функции: доставки, удаления, гомеостаза, охраны, воспроизведения.

Очищающий отбор - естественный отбор , направленный на устранение из генофонда популяции вредных аллелей.

Панмиксия - ситуация, обеспечивающая возможность скрещивания между любыми двумя особями популяции.

Полигенные мутации - мутации, оказывающие на величину количественного признака слабый эффект, сопоставимый с влиянием внешней среды.

Популяция - совокупность особей одного вида, отделенная от других популяций того же вида барьерами, ослабляющими генный поток.

Правило Бергмана - у теплокровных животных тенденция к увеличению размеров тела в более холодных областях ареала вида.

Правило Копа - макроэволюционная тенденция к увеличению размеров тела.

Принцип максимальной адаптируемости - организация живых существ, обеспечивающая максимальную скорость фиксации благоприятных мутаций.

Принцип симморфоза - гласит, что мощность ни одной рабочей структуры не превосходит уровня, необходимого организму при максимальных нагрузках.

Рабочая структура - структура организма, способствующая протеканию любого процесса по преобразованию энергии и вещества окружающей среды в биомассу популяции.

Синтетическая теория эволюции - теория эволюции, основанная на достижениях таких областей биологии, как дарвинизм, классическая генетика , экология, популяционная генетика и палеонтология.

Сложность лопастной линии (аммоноидей) - степень изогнутости лопастной линии, определяемая как логарифм отношения длины этой линии к длине контура поперечного среза раковинной трубки моллюска.

Соматический - относящийся к телу особи, но не к ее гаметам.

Специальные гены структуры - гены, аккумулированные в ходе макроэволюции под действием отбора на повышение мощности рабочей структуры.

Сутура (см. Лопастная линия аммоноидей ).

Сцепление - расположение генов в одной хромосоме (одной группе сцепления). Сила сцепления между генами находится в обратной зависимости от вероятности кроссинговера между ними.

Тагмозис - морфологическая и функциональная дифференциация отделов тела у членистоногих.

Теория прерывистого равновесия - взгляд на видообразование как на относительно краткий (в геологическом масштабе) процесс, чередующийся с длительными периодами стазиса.

Стазис - фаза существования вида, характеризующаяся неизменностью морфологии особей.

Фенотип - совокупность всех признаков и свойств особи, формирующихся в процессе взаимодействия ее генотипа и внешней среды.

Филетическая группа - иерархически организованная группа филетических линий, происходящих от общего предка.

Филетическая линия - цепь видов, связанных отношением предок-потомок.

Филетическое видообразование - превращение одного вида в другой, не сопровождающееся ветвлением филетической линии.

Хромосома - клеточный органоид, основу которого составляет единая молекула ДНК - материального носителя наследственной информации.

Чистые линии - группы родственных особей, практически идентичных в генетическом отношении. Гомозиготны по большинству генов.

Экологическая ниша - комплекс параметров среды, необходимый для неопределенно долгого существования вида.

Экспрессия (гена) - отражение активности гена на фенотипе особи.

Эмбриональная индукция - переключение группы клеток эмбриона на новый путь развития под влиянием молекулярного сигнала от близко расположенных клеток другого типа.

Энергетический прогресс - прогресс, связанный с повышением суммарной мощности метаболизма индивида.

<<< Назад
Вперед >>>

Общее понятие об эволюции

Мы часто встречаем в литературе термин «эволюция». Но не всегда можем четко объяснить его значение. Поэтому в данной статье мы рассмотрим вопрос об эволюции вообще и эволюции живых организмов детальнее. Толковый словарь дает такое объяснение данного термина:

Ключевыми моментами в этом определении являются тезисы о необратимости изменений и постепенному (поэтапному) переходу от одного состояния к другому.

В широком смысле можно говорить об эволюции нравов, эволюции моды, подразумевая любое развитие. Теперь детальнее рассмотрим биологическую эволюцию.

Биологическая эволюция

Вспоминая широко известную фазу: «Все течет, все изменяется», мы можем с успехом применить ее и к живым организмам. Они также претерпевают изменения. Процесс эволюции характерен и для них. Современная биология дает такую трактовку понятия эволюции:

Определение 2

«Биологическая эволюция - это естественный необратимый процесс развития живой природы, который сопровождается изменением генетического состава популяций, формированием адаптаций, видообразованием и вымиранием видов, преобразованием экосистем и биосферы в целом».

За время развития науки возникало большое количество теорий, пытавшихся объяснить механизм эволюционных превращений.

Развитие эволюционных взглядов в науке

С самого начала развития человеческого познания сформировался комплекс тесно связанных между собой наук, которые занимались изучением природы. Этот комплекс получил название естествознание.

Уже в античные времена естествоиспытатели (тогда их называли натурфилософами) занимались описанием растений и животных. Длительное время в науке преобладал описательный метод познания. Но зачастую он приводил лишь к бессистемному, хаотическому накоплению научных фактов. Еще Аристотель и Тэофраст попытались систематизировать знания о живых организмах, разделив их на растения и животных. Карл Линней попытался создать стройную систему органического мира. Но длительное время ученые не могли объяснить причины видового многообразия живых организмов, механизм появления изменений в живых организмах.

Метафизические взгляды отрицают изменения в органическом мире. А креационизм предполагает вмешательство некоей силы – «Творца» в создание жизни и живых организмов. Обе теории не могут объяснить наличие ископаемых форм и причины их вымирания.

Теория трансформизма, возникшая на гребне промышленного переворота и социальных преобразований $XVIII – XIX$ веков, уже признавала возможность изменения видов и пыталась объяснить механизм этих изменений.

Идеи трансформизма нашли свое дальнейшее развитие в трудах знаменитого французского ученого Жана-Батиста Ламарка. Он впервые создал целостную теорию исторического развития флоры и фауны. Он активно выступал против метафизического постулата неизменности форм живого.

Ламарк допускал возможность самозарождения жизни из неживой природы. Усложнение организации живых организмов от низшей ступени к высшей в процессе эволюции Ламарк называл градацией. Но во взглядах Ламарка отражалось и идеалистическое мировоззрение. Так, например, эволюцию высших животных он объяснял стремлением к совершенствованию.

Замечание 1

Идеи ламаркизма, открытия в цитологии, достижения палеонтологии и личные наблюдения позволили выдающемуся британскому исследователю Чарльзу Дарвину разработать свою эволюционную теорию. Дарвиновская теория происхождения видов на долгие годы обеспечила биологическую науку надежным теоретическим фундаментом для дальнейших исследований.

Но человеческое познание не стоит на месте. Теория Дарвина уже не может объяснить новые факты. Поэтому в настоящее время общепризнанной является синтетическая теория эволюции (СТЭ). Она представляет собой, синтез классического дарвинизма и популяционной генетики. СТЭ позволяет объяснить связь материала эволюции (генетические мутации) и механизма эволюции (естественный отбор).

Эволюционное учение - это наука о причинах, движущих силах, механизмах и общих закономерностях исторического развития живого мира. Эволюцией в биологии называют непрерывное направленное развитие живого мира, сопровождающееся изменением строения и уровней организации разных групп организмов, позволяющее им более эффективно приспосабливаться и существовать в самых различных условиях обитания.

Эволюционное учение является теоретической базой биологии, так как оно объясняет основные особенности, закономерности и пути развития органического мира, позволяет понять причину единства и огромного многообразия органического мира, выяснять исторические связи между разными формами жизни и предвидеть их развитие в будущем. Эволюционное учение обобщает данные многих биологических наук, позволяет понять механизмы и направления изменчивости живой материи и использовать эти знания в практике селекционных работ.

Эволюционное учение возникло не сразу. Оно сложилось как результат длительной борьбы двух принципиально противоположных систем взглядов на жизнь и ее происхождение - идей Божественного сотворения мира и представлений о самозарождении и саморазвитии жизни. На основе этих воззрений в науке сложились два направления - креационизм, развивающий идеи сотворения мира Богом или Высшим разумом, второе - эволюционизм, допускающий возможность самозарождения и саморазвития органического мира. Существовали также представления о вечности жизни в природе.

Уже в древности эти идеи активно обсуждались, и в их развитие внесли большой вклад такие выдающиеся мыслители своего

Додарвиновский период развития эволюционных идей в биологии времени, как Фалес Милетский, Анаксимандр, Анаксимен, Гераклит, Эмпедокл, Демокрит, Платон, Аристотель и многие другие.

В Средние века господствовали в основном идеи креационизма и неизменности мира.

Наиболее крупными учеными додарвиновского периода развития биологии были К. Линней и Ж. Б. Ламарк.

Карл Линней (1707-1778) - выдающийся шведский ученый. Именно он сделал попытку обобщить имевшиеся в то время данные о многообразии органического мира и создать его научную классификацию, изложив свои взгляды по этим вопросам в «Системе природы» (1735). Он является создателем систематики и номенклатуры - наук о принципах классификации и правилах их наименования. Основной таксономической категорией у растений и животных К. Линней считал вид, определяя его как множество сходных особей, воспроизводящих себе подобных. Виды он объединял в роды. В своей системе он выделял пять таксономических категорий разного уровня: класс, отряд, род, вид, разновидность. Для названия видов К. Линней использовал бинарную номенклатуру, то есть двойное наименование - с указанием названий рода и вида (например, мухомор красный, олень благородный и т. п., где первое слово - название рода, а второе - вида). Описания видов и их названия он сделал на латинском языке, принятом тогда в науке. Это намного облегчило взаимное понимание между учеными разных стран, так как в разных языках один и тот же вид может называться совершенно по-разному. Поэтому до сих пор научные названия растений, грибов или любых других организмов принято писать на латинском языке, понятном специалистам разных стран. Всего К. Линней составил описания около десяти тысяч видов растений и животных, объединив их в 30 классов (24 класса растений и 6 классов животных). Однако система К. Линнея была искусственной, основанной на сходстве только внешних признаков. Так, к классу червей он относил кишечнополостных, губок, иглокожих и даже круглоротых, которые сейчас относятся к совершенно разным типам животных. Растения он разделял на классы по наличию или отсутствию цветка, форме цветка и по числу тычинок и пестиков в нем. Но вместе с тем он совершенно правильно отнес человека к отряду приматов. Это было революционным шагом для того времени. Не случайно труд К. Линнея долгое время был запрещен Ватиканом. К. Линней считал виды неизменными, существующими в том состоянии, как их создал Бог. Но он отмечал, что разновидности могут со временем изменяться. Большой заслугой К. Линнея является то, что его систематика фактически отражала результаты эволюции - многообразие организмов от простых форм к более сложным, а таксономические категории впервые определили иерархию и соподчиненность разных групп организмов - от видов до классов.

Очень крупной фигурой в биологии является Жан-Батист Ламарк (1744-1829) - французский ученый, создавший первое целостное эволюционное учение, основы которого он изложил в своем труде «Философия зоологии» (1809). В нем он впервые доказал, что всем видам присуща изменчивость. Основными причинами изменчивости Ж. Б. Ламарк считал влияние внешней среды и стремление живых организмов к совершенству, заложенное в них Богом. Таким образом, по Ламарку, процесс эволюции как бы намечен самим Творцом. Главным механизмом изменчивости видов Ламарк считал упражнение или неупражнение органов. Под влиянием меняющихся условий среды обитания животным приходится менять свои привычки и способы добывания пищи. Например, у жирафа, которому приходится тянуться вверх за листьями деревьев, со временем вытянулась шея (упражнение органа), а у крота, обитающего под землей, произошла потеря зрения (неупражнение органа). Ламарк дал более подробную по сравнению с Линнеем классификацию животных, распределив их по 14 классам. Он отделил позвоночных животных от беспозвоночных. Выделенные им 14 классов животных были разделены по степени усложнения строения на 6 градаций (ступеней усложнения). Так, к 1-ой градации он отнес и полипов, ко 2-ой - лучистых животных и червей, к 3-й - насекомых и паукообразных, к 4-ой - ракообразных, кольчатых червей, усоногих и моллюсков, к 5-ой - рыб и рептилий и к 6-ой - птиц, млекопитающих и человека. Он совершенно справедливо отмечал происхождение высших форм животных от низших и считал, что человек произошел от обезьян. Заслугой Ламарка является также введение в науку терминов «биология» и «биосфера», которые получили впоследствии широкое распространение.

К середине XIX века наука созрела для создания эволюционного учения в биологии. Причин этому было много. Назовем только некоторые из них.

1. Завершение эпохи Великих географических открытий (XV-ХVIII вв.) показало человечеству все многообразие мира.

Ранее, во времена древнего мира, античности, раннего и среднего Средневековья, люди жили в своих городах и селениях, и круг их путешествий ограничивался лишь небольшим набором сопредельных регионов. Это создавало иллюзию об однообразии и стабильности окружающего мира (см. статью: ). Эпоха кругосветных путешествий обнаружила полную несостоятельность этих представлений. Появились многочисленные описания новых земель, их природы и населяющих их племен, растений и животных, которые разрушали привычные воззрения об однородности и неизменности мира.

2. Активная колонизация вновь открытых земель европейцами потребовала составления подробных описаний природы, климата и ресурсов этих районов, что существенно расширяло знания людей о природе . В этой работе принимали участие уже не одиночки-путешественники, а большие массы людей, что способствовало быстрому распространению новых знаний среди широких слоев населения стран Европы.

3. Развитие капитализма в странах Западной Европы ускорило прогресс в технике и научных изысканиях, необходимых для развития промышленности.

4. Интенсивное развитие науки, в свою очередь, ускорило процесс создания эволюционного учения. В это время активно развиваются многие науки о природе, свидетельствующие о ее целостности и определенном развитии: геология, показавшая единство строения минералов и горных пород в разных регионах Земли; палеонтология, накопившая большое количество окаменелостей, давно вымерших растений и животных, что свидетельствовало о древности жизни и смены одних ее форм другими. Кроме того, были обнаружены ископаемые организмы, составляющие явно переходные звенья между ныне существующими и вымершими формами. Эти факты требовали своего объяснения. Успехи сравнительной анатомии выявили общность строения многих групп растений и животных и показывали существование переходных форм между отдельными группами организмов. Цитология выявила общий характер клеточного строения растений и животных. Эмбриология нашла сходство развития зародышей у разных групп животных. Значительные успехи были достигнуты в области селекции растений и животных, свидетельствующие о возможности искусственного изменения их форм и продуктивности.

Все это вместе взятое и подготовило базу и условия разработки эволюционного учения.

Создание эволюционной теории Ч. Дарвина и А. Уоллеса

Основы современной теории эволюции были созданы выдающимся английским ученым-энциклопедистом Чарлзом Дарвином (1809-1882). Независимо от него в это же время работал и пришел к очень близким выводам соотечественник Ч. Дарвина - зоолог Альфред Уоллес (1823-1913).

Научные интересы Ч. Дарвина как натуралиста были чрезвычайно разнообразны: он занимался ботаникой, зоологией, геологией, палеонтологией, теологией, интересовался вопросами селекции и т. п. Большую роль в жизни Ч. Дарвина и формировании его научных идей сыграло кругосветное путешествие в составе экспедиции на корабле «Бигл» в 1831-1836 гг. Там он смог досконально изучить специфику фауны Галапагосских островов, Южной Америки и ряда других районов мира. Уже в этот период у Ч. Дарвина начинают формироваться основные эволюционные идеи и он приближается к открытию принципа дивергенции - расхождения признаков у потомков общего предка как механизма формо- и видообразования. Большую роль в формировании эволюционистских идей Ч. Дарвина сыграло его участие в палеонтологических раскопках в Уругвае, где он познакомился с некоторыми вымершими формами гигантских ленивцев, броненосцев и ряда беспозвоночных. Вернувшись из экспедиции, Ч. Дарвин пишет ряд монографий и выступает с докладами, принесшими ему признание научной общественности и широкую известность.

Анализируя темпы размножения и реальную численность популяций в природе, Ч. Дарвин задался вопросом о причинах вымирания одних форм и выживания других. Для решения этой проблемы он привлекает идеи Томаса Мальтуса (1766-1834) о борьбе за существование в человеческом обществе, изложенные последним в труде «Опыт в законе народонаселения».

Так у Ч. Дарвина родились собственные идеи о роли борьбы за существование в процессах выживания видов в природе и значении естественного отбора как важнейшего фактора, определяющего направление эволюции. Основными механизмами борьбы за существование Ч. Дарвин считал внутри- и межвидовую конкуренцию, а избирательная гибель рассматривалась им как основа естественного отбора. Эти процессы могут ускоряться при пространственной изоляции популяций. Ч. Дарвин совершенно правильно отмечал, что эволюционируют не отдельные особи, а виды и внутривидовые популяции, то есть эволюционный процесс происходит на надорганизменном уровне.

Особую роль в эволюции Ч. Дарвин отводил наследственной изменчивости организмов в популяциях и половому воспроизводству организмов как одному из главных факторов естественного отбора.

Процесс видообразования Ч. Дарвин считал постепенным, он проводил определенные параллели меду естественным и искусственным отбором, приводящим к формированию подвидов, видов и пород или сортов животных и растений. Он подчеркивал также важное значение других наук (палеонтологии, биогеографии, эмбриологии) в доказательствах эволюции. Эти труды были оценены высшей наградой Королевского научного общества. Квинтэссенцией этих сочинений стал труд «Происхождение видов путем естественного отбора или сохранение благоприятствуемых рас (форм, пород) в борьбе за жизнь», изданный Ч. Дарвином в 1859 г. и не потерявший своего значения и в наше время.

Очень похожие взгляды на эволюцию живого мира и ее механизмы представил и А. Уоллес. Даже многие термины в трудах обоих ученых совпали.

А. Уоллес обратился к Ч. Дарвину, как известному эволюционисту, с просьбой просмотреть и прокомментировать его труд. Доклады обоих ученых на эту тему были опубликованы в одном томе Трудов Линнеевского общества, и сам А. Уоллес, и научная общественность единодушно признали приоретет Ч. Дарвина в этих вопросах. Само эволюционное учение долгое время носило имя его основателя - дарвинизм.

Важнейшей заслугой Ч. Дарвина и А. Уоллеса стало то, что они определили главный фактор эволюции - естественный отбор - и тем самым обнаружили причины протекания эволюции живого мира.

Вид как этап эволюционного процесса

Основной эволюционной единицей является вид. Именно вид, по мнению Ч. Дарвина, является центральным звеном эволюционного процесса. Само представление о виде было сформулировано еще в античные времена Аристотелем, который рассматривал вид как совокупность сходных особей. Примерно этих же представлений о виде придерживался и К. Линней, рассматривая его как самостоятельную, дискретную и неизменную биологическую и систематическую структуру. В настоящее время вид рассматривается как реально существующая в природе группа особей. Остальные систематические категории являются в известной мере производными вида, выделяемыми учеными на основании тех или иных признаков (роды, семейства и т. п.).

В современной биологии видом называют совокупность популяций особей, обладающих наследственным сходством морфологических, физиологических и биохимических признаков, свободно скрещивающихся и дающих плодовитое потомство, приспособленных к определенным условиям жизни и занимающих определенную территорию - ареал. Вид - это основная структурная и таксономическая единица в системе живой природы и качественный этап эволюции организмов.

Критерии вида

Каждый вид характеризуется многими признаками, которые носят название критериев вида.

1. Морфологические критерии включают сходство внешнего и внутреннего (анатомического) строения организмов. Морфологические признаки очень изменчивы. Например, деревья, растущие в густом лесу и на открытых пространствах, выглядят по-разному. Иногда в пределах одного вида могут быть особи сильно различающиеся по морфологии. Такое явление носит название полиморфизма. Это может быть связано с наличием разных стадий развития растений и животных, чередованием полового и бесполого поколений и т. п. Так, личиночные и взрослые стадии многих насекомых совершенно не похожи друг на друга. Различаются морфологически стадии медуз и полипов у кишечнополостных, гаметофит и спорофит у папоротникообразных и т. п.

Если особи различаются двумя морфологическими типами, то их называют диморфными (например, половой диморфизм).

Вместе с тем бывают случаи высокого морфологического сходства разных видов. Такие виды носят название видов-двойников.

Не зная всего этого, каждый определенный морфологический тип можно принять за самостоятельный вид или, напротив, разные, но морфологически похожие виды можно неверно отнести к одному виду. Таким образом, морфологический критерий не может быть единственным при определении вида.

2. Генетический критерий вида подразумевает существование вида как целостной генетической системы, составляющей генофонд вида (совокупность генотипов всех особей, относящихся к этому виду).

Каждому виду свойствен определенный набор числа хромосом (у человека, например, диплоидный набор хромосом 2п равен 46), определенная форма, структура, размеры и характер окраски хромосом. У разных видов число хромосом неодинаково, и по этому критерию можно легко различать очень близкие по морфологии виды (виды-двойники). Так были разделены очень похожие друг на друга виды полевок обыкновенных, имеющие 46 и 54 хромосомы, крыс черных (с диплоидными наборами хромосом 38 и 42). Разное число хромосом у разных видов позволяет особям свободно скрещиваться с представителями своего вида, образуя жизнеспособное и плодовитое потомство, но, как правило, оно обеспечивает частичную или полную генетическую изоляцию при скрещиваниях с особями других видов - вызывая гибель гамет, зигот, эмбрионов или же приводя к образованию нежизнеспособного или бесплодного потомства (вспомните, например, мула - бесплодного гибрида осла и лошади, лошака - бесплодного гибрида коня и ослицы).

В настоящее время генетические критерии вида дополнены молекулярными анализами ДНК и РНК (картирование генов, определение последовательности расположения нуклеотидов в молекулах нуклеиновых кислот и т. п.). Это позволяет не только разделять близкие виды, но и определять степень родственной близости или отдаленности разных видов, облегчает проведение филогенетического анализа определенных групп видов, позволяющего выявить родственные связи между разными видами и группами организмов и последовательность их образования.

Однако, несмотря на большие возможности генетических анализов, они также не могут быть абсолютными критериями при определении видов. Например, одинаковые по числу наборы хромосом могут быть у представителей совершенно разных групп растений, грибов или животных. В природе также известны случаи межвидовых скрещиваний с получением жизнеспособных и плодовитых потомков (например, у некоторых видов канареек, зябликов, ив, тополей и др.).

3. Физиологический критерий включает единство всех процессов жизнедеятельности у всех особей одного вида. Это одинаковые способы питания, обмена веществ, размножения и т.п. Это сходство биологических ритмов особей одного вида (периоды активности и отдыха, зимние или летние спячки). Данные признаки также являются важной характеристикой вида, но не единственной.

4. К биохимическим критериям вида можно отнести, например, сходство строения белков, химического состава клеток и тканей, совокупности всех химических процессов, происходящих у всех представителей вида и т.п. К этой же категории признаков можно отнести способность некоторых видов организмов образовывать биологически активные соединения (такие, как антибиотики, токсины, алкалоиды и др.) и любые другие органические вещества (органические кислоты, аминокислоты, спирты, пигменты, углеводы, углеводороды и др.), что широко используется человеком в различных биологических технологиях. Это тоже очень важные признаки вида, дополняющие другие его характеристики.

5. Экологический критерий вида включает характеристику его экологической ниши. Это очень важная характеристика вида, отражающая его место и роль в биоценозах и в биогеохимических круговоротах веществ в природе. Она включает характеристику мест обитания вида, многообразие его биотических связей (место и роль в цепях питания, наличие симбионтов или врагов и т. п.), зависимость от природных факторов (температуры, влажности, освещения, кислотности и солевого состава среды и пр.), периоды и ритмы активности, участие в превращениях определенных или веществ (окисление или восстановление , серы, азота, разложение белков, целлюлозы, лигнина или иных органических соединений и т. п.). То есть экологическая ниша - это полная характеристика того, где вид встречается в природе, когда он активен, в чем и каким образом проявляется его жизнедеятельность. Но и данный критерий не всегда достаточен для определения вида.

6. Географический критерий включает характеристику и величину ареала, занимаемого видом на планете. На этой территории вид встречается и проходит полный цикл развития. Ареал называется первичным, если образование вида произошло именно на этой территории, и вторичным, если территории были заняты видом вследствие случайных миграций, природных катастроф, перемещения человеком и т. п. Ареал может быть сплошным, если вид встречается на всем его пространстве в подходящих местообитаниях. Если ареал распадается на ряд разобщенных и удаленных территорий, между которыми уже невозможны миграции или обмен спорами и семенами, то он называется прерывистым. Выделяют также реликтовые ареалы, занимаемые древними, случайно выжившими видами.

Виды, которые занимают обширные пространства земли и встречаются в разных эколого-географических зонах, называются космополитами, а занимающие лишь небольшие (локальные) территории и не встречающиеся в других местах, получили название эндемиков.

Для видов с обширными ареалами характерна определенная географическая изменчивость, получившая название клинальной изменчивости. У последних видов возможно также существование географических форм и рас и определенных экотипов, приспособленных к конкретным местообитаниям в пределах ареала.

Как уже отмечалось выше, ни один из названных критериев не является достаточным для характеристики видов и последний можно характеризовать только по комплексу признаков.

Популяции

Вид состоит из популяций. Популяцией называется совокупность особей одного вида, обладающих общим генофондом, заселяющих определенную территорию (часть ареала вида) и размножающуюся путем свободного скрещивания. Популяции, в свою очередь, состоят из более мелких групп особей - семей, демов, парцелл и т. п., связанных друг с другом единством занимаемой территории и возможностью свободного скрещивания.

Связь родителей с потомством обеспечивает непрерывность популяции во времени (наличие нескольких поколений особей в популяции), а свободное половое размножение поддерживает генетическое единство популяции в пространстве.

Популяции являются структурной единицей вида и элементарной единицей эволюции.

Популяции - это динамичные группы, они могут объединяться друг с другом, распадаться на дочерние популяции, мигрировать, менять свою численность в зависимости от условий существования, приспосабливаться к определенным условиям жизни, погибать в неблагоприятных условиях.

В пределах ареала вида популяции распределены очень неравномерно. Их будет больше и они будут более многочисленны в благоприятных условиях существования. Напротив, в неблагоприятных условиях и на границах ареала они будут редки и малочисленны. Иногда популяции имеют островной или локальный характер распределения, например, березовые колки на Урале и в Сибири или пойменные рощи и леса в степной зоне.

Число особей, приходящихся на определенную единицу площади или объем среды, носит название плотности популяции. Плотность популяций очень сильно меняется в разные сезоны и годы. Наиболее резко она меняется у мелких организмов (например, у комаров, водорослей, вызывающих цветение водоемов, и т. п.). У крупных организмов численность и плотность популяций более стабильны (например, у древесных растений).

Каждая популяция характеризуется определенной структурой, которая зависит от соотношения в ней особей разного пола (половая структура), возраста (возрастная структура), размеров, разных генотипов (генетическая структура) и т. п. Возрастная структура популяций может быть очень сложной. Наиболее четко это можно наблюдать у древесных растений, где отдельные особи могут существовать многие десятки и даже сотни лет, принимая активное участие в процессах перекрестного опыления. Таким образом, складываются популяции, состоящие из множества родственных друг другу поколений. В других популяциях возрастная структура может быть очень простой, например, у однолетних растений, которые представляют собой одновозрастные группы.

Популяции постоянно изменяются во времени и в пространстве, и именно эти изменения и представляют собой элементарные эволюционные процессы. Вот почему популяции называют элементарной эволюционирующей структурой.

Механизмы и закономерности изменчивости популяций в природе и их генетическую основу подробно изучали крупнейшие российские генетики и эволюционисты А. С. Серебровский (1892-1948) и С. С. Четвериков (1880-1959). Их трудами и работами их последователей созданы основы популяционной генетики.

Основные типы эволюционного процесса

Дивергенция

Дивергенцией Ч. Дарвин называл расхождение признаков в процессе эволюции, приводящее к появлению новых форм или таксонов организмов, происходящих от общего предка. Дивергенция приводит также к преобразованию одних органов тела в другие в связи с выполнением новых функций. Например, после выхода позвоночных животных на сушу их передние конечности претерпели значительные изменения в зависимости от освоения тех или иных типов местообитаний и образа жизни (бегательные у ящериц, волков, кошек, оленей или других, роющие у кротов, крылья у птиц, крылообразные у летучих мышей, хватательные у обезьян, рука у человека, ласты при вторичном освоении водной среды ихтиозаврами, моржами или китообразными и т. д.). Такие органы, имеющие общее происхождение, но выполняющие разные функции, получили название гомологичных. Гомологичными органами являются листья растений, усики гороха, колючки кактусов, шипы барбариса и др.

Конвергенция

Конвергенцией называется независимое возникновение сходных признаков у организмов, имеющих различное происхождение (не родственных друг другу), или у органов, имеющих различное происхождение, но выполняющих сходные функции. Чаще всего конвергенция возникает при заселении сходных типов местообитаний. Например, конвергентное сходство отмечается у крыльев бабочек и рукокрылых, роющих конечностей кротов и медведок, жабр рыб и ракообразных, толчковых ног зайцеобразных и саранчовых и т. п. Но иногда конвергентное сходство возникает под влиянием сходства выполняемых функций, например, удивительная похожесть строения глаз млекопитающих и головоногих моллюсков. Но в любом случае эти органы формируются из разных частей эмбрионов этих животных.

Параллелизм

Параллелизм - это тип эволюции, при котором конвергентное сходство возникает на основе гомологичных органов. Гомологичные органы или морфологические формы, имевшие когда-то общее происхождение, но потом изменившиеся и переставшие быть похожими друг на друга, в новых условиях снова приобретают черты большого сходства. Это вторичное сходство бывших родственных форм. Например, рыбообразная обтекаемая форма вторично возникает при переходе животных от наземного образа жизни к водному. Вспомните похожесть строения акул (первичноводные животные) и ихтиозавров и китообразных (вторично-водные). У кошачьих саблезубость возникала в разное время у разных видов. Причина параллелизма - одинаковое направление естественного отбора и определенная генетическая близость между такими группами организмов.

Филетическая эволюция

Филетическая эволюция, или филогенез, - это такой тип эволюционного процесса, при котором происходит постепенное преобразование одних таксонов в другие без образования боковых ветвей. При этом образуется непрерывный ряд популяций (таксонов), в котором каждый таксон является потомком предыдущего и предком последующего, не имея сестринских таксонов. Этот тип был описан американским исследователем Дж. Симпсоном в 1944 г.

Изучая закономерности эволюции растений, выдающийся российский (советский) генетик Н. И. Вавилов открыл интересные явления, названные им законом гомологических рядов. Этот закон непосредственно вытекает из анализа соотношений и взаимосвязей между разными типами эволюционного процесса и показывает большое сходство эволюционных изменений у родственных групп организмов. Причиной этого является сходство мутаций гомологичных генов в генофондах родственных видов. Поэтому, зная спектр изменчивости одного вида (или рода), можно с большой вероятностью предсказать многообразие форм другого вида (или рода). При этом целые семейства растений могут характеризоваться определенным циклом изменчивости, обнаруживаемой у всех его родов и видов. Так, зная формы изменчивости ячменя, Н. И. Вавилов очень точно предсказал и впоследствии обнаружил сходные формы у пшеницы.

Правила эволюции

Подводя итог изложению процессов микро- и макроэволюции, можно привести несколько общих правил, которым эти процессы подчиняются.

1. Непрерывность и неограниченность эволюции - эволюция возникла с момента образования жизни и будет непрерывно продолжаться, пока существует жизнь.

3. Правило происхождения специализированных групп от неспециализированных. Только неспециализированные, широко приспособленные группы могут дать толчок эволюции и вызвать образование специализированных групп.

4. Правило прогрессирующей специализации групп. Если группа организмов стала на путь специализации, то последняя только углубляется и обратного возврата не происходит (правило Депере).

5. Правило необратимости эволюции. Все эволюционные процессы необратимы, и все новые эволюционные процессы происходят на новой генетической основе (правило Долло). Например, после выхода на сушу ряд животных вернулся к водному образу жизни, сохранив свои эволюционные приобретения. В частности, и ихтиозавры, и китообразные являются вторичноводными животными, но они не превратились в рыб, а остались пресмыкающимися или млекопитающими, сохранив все особенности своих классов.

6. Правило адаптивной радиации. Эволюционное развитие происходит в разных направлениях, способствуя заселению разных сред обитания.

Филогения и систематика как отражение эволюционных процессов

Изучение микро- и макроэволюционных процессов позволяет установить филогенетические (то есть родственные) связи между разными группами живых организмов и определить время появления этих форм.

Филогенезом называют процесс исторического развития группы или конкретного вида. Филогенезом можно также назвать длительный непрерывный ряд множества онтогенезов, отражающий основные эволюционные перестройки. Изучение филогенеза позволяет установить родственные связи между разными таксонами и выяснить механизмы и время эволюционной перестройки определенных групп живых организмов.

Выделяют следующие основные формы филогенеза:

1) монофилия - происхождение разных видов от одного общего предка;

2) парафилия - одновременное образование видов путем синхронной дивергенции предковой формы на два или большее число новых видов;

3) полифилия - происхождение группы видов организмов от разных предков путем гибридизации и/или конвергенции.

Механизмы и способы филогенетических изменений

1. Усиление (интенсификация) функций тела или его органа, например увеличение объема мозга или легких, приведшие к интенсификации их активности.

2. Уменьшение числа функций. Примером может быть преобразование пятипалой конечности у парно- и непарнокопытных животных.

3. Расширение числа функций. Например, у кактусов стебель помимо основных своих функций выполняет функцию запасания .

4. Смена функций. Например, преобразование ходильных конечностей в ласты у вторичноводных млекопитающих (моржей и др.).

5. Замена одного органа другим (субституция). Например, у позвоночных животных хорда заменяется на костный позвоночник.

6. Полимеризация органов и структур (то есть повышение числа однородных структур). Например, эволюция одноклеточных организмов в колониальные и далее в многоклеточные формы.

7. Олигомеризация органов и структур. Это противоположный полимеризации процесс. Например, образование прочного таза путем сращивания нескольких костей.

Систематика как отражение эволюционных процессов

Систематика - наука о положении организмов в общей системе живого мира. Существует множество систем органического мира. Среди них выделяют искусственные системы, учитывающие лишь чисто внешнее сходство между организмами (примером может быть система К. Линнея), и естественные, или филогенетические системы.

Знание систематики необходимо не только с точки зрения определения вида организма (хотя уже это очень важно), но и для понимания его места (а часто и роли) в живом мире, для представления о его происхождении и родственных связях с другими организмами.

Современная систематика основана на тщательном изучении филогенетических связей между разными группами организмов и, по сути дела, во многом отражает основные этапы развития органического мира от простых форм к сложным. Именно так изложен в школьных учебниках материал по систематике растений и животных.

Составной частью систематики является таксономия - наука о принципах классификации живых существ.

Основной таксономической единицей является вид, образующийся в процессе микроэволюции. Родственные виды объединяют в роды, а близкие роды - в семейства. Семейства, имеющие какие-то общие признаки, группируют в порядки (в ботанике) или в отряды (в зоологии). Порядки и отряды объединяют в классы по принципу сходства ряда крупных признаков - одна или две семядоли у цветковых растений, особенности строения и развития у животных (рептилии, птицы, млекопитающие и т. п.).

Сходство некоторых принципиальных признаков позволяет объединять классы в типы (у животных) или отделы (у растений). Пример - цветковые растения (имеют цветок и защищенные плодом семена), хордовые животные (наличие хорды), членистоногие (членистые конечности) и т.п. Причем типы, классы, а часто и порядки могут объединять не только родственные, но и конвергентно сходные формы.

Типы или отделы объединяют в царства по принципу сходства строения и выполняемых функций больших групп организмов. Например, фотосинтезирующие организмы, выделяющие при фотосинтезе кислород, относят к растениям. Царства, как правило, имеют полифилетическое происхождение.

Царства можно объединять в надцарства и империи. В настоящее время выделяют следующие формы жизни.

Неклеточные формы жизни - вирусы.

Клеточные формы жизни:

1) надцарство (или империя) Прокариоты (включает царства Архебактерий и Истинных бактерий); 2) надцарство (или империя) Эукариоты (царства , Животных, Растений и Грибов). Простейших часто объединяют с животными.

Таким образом, крупные систематические категории (царства, типы (отделы), классы, отряды (порядки) являются по сути дела отражением главнейших направлений эволюционного процесса.

Определения терминов, приведенные в этом словаре, не всегда являются абсолютно точными и строгими с научной точки зрения, хотя для популярной книги точность вполне достаточная. Давать строгие определения биологическим понятиям - крайне неблагодарное дело. Как ни изворачивайся, в любом определении все равно найдутся неточности и исключения, слишком уж сложны и разнообразны объекты биологических исследований.


абиогенный (процесс) - не связанный с живыми организмами,осуществляемый без участия живого,

абиогенез - происхождение жизни из неживой материи в результате естественных процессов развития (химической эволюции).

автотрофы - организмы, умеющие превращать неорганический углерод в органические соединения, то есть осуществлять фиксацию углерода. Глава 2, стр. 95.

адаптация - приспособление. Термин используется в двух смыслах: 1. орган, признак, свойство, имеющее приспособительное значение: "Густой мех - адаптация к холодному климату"; 2. процесс приобретения таких признаков: "В ходе адаптации к холодному климату животное приобрело густой мех". Когда хотят подчеркнуть, что речь идет не о приспособительных признаках, а именно о процессе их приобретения, иногда пользуются термином "адаптациогенез".

аллель - вариант гена. В популяции каждый ген может существовать в виде множества разных аллелей. У гаплоидных организмов каждый ген присутствует в единственном экземпляре, то есть имеется только один аллель данного гена. У диплоидных организмов каждый ген присутствует в двух копиях. Если обе копии гена представляют собой один и тот же аллель, такой организм называют гомозиготным по данному гену. Если две копии различаются, то есть представляют собой разные аллели, такой организм называют гетерозиготным.

анаэробы - организмы, не нуждающиеся в кислороде и обитающие в бескислородных условиях.

антиген - чужеродное вещество, обычно белок или углевод, которое при введении в организм животного вызывает появление специфических антител, умеющих распознавать и связывать данный антиген.

антикодон - три нуклеотида (триплет) в молекуле транспортной РНК, комплементарные какому-либо кодону матричной РНК (см. "генетический код"). В ходе трансляции (синтеза белка) транспортные РНК, несущие определенные аминокислоты, поочередно присоединяются своими антикодонами к кодонам мРНК. Специальные ферменты прикрепляют очередную аминокислоту, принесенную молекулой тРНК, к синтезируемой молекуле белка. Так осуществляется считывание генетического кода, или перевод последовательности нуклеотидов мРНК в последовательность аминокислот молекулы белка. Глава 1, стр. 59, 61.

антитела - защитные белки, которые умеют узнавать определенных бактерий, вирусов, а также любые чужеродные белки и многие углеводы, и прикрепляться к ним, что приводит к обезвреживанию самих возбудителей или выделяемых ими токсинов. Молекулы, распознаваемые антителами, называют "антигенами". Глава 7, стр. 386.

ароморфоз - крупное эволюционное преобразование "прогрессивного" характера. По определению И. И. Шмальгаузена, ароморфоз - это "расширение жизненных условий, связанное с усложнением организации и повышением жизнедеятельности". Стр. 309.

археи - одно из трех надцарств живой природы (наряду с бактериями и эукариотами). Вместе с бактериями составляют группу прокариот. Внешне и по образу жизни похожи на бактерий. Отличаются от последних на молекулярном уровне - нуклеотидными последовательностями генов, строением клеточной мембраны, рибосом, важнейших ферментов и др. Часто встречаются в экстремальных местообитаниях (глубоко под землей, в источниках с очень горячей водой). Глава 2, стр. 94.

АТФ - аденозинтрифосфат, главная "энергетическая молекула" живой клетки. Представляет собой нуклеотид аденозин с тремя присоединенными фосфатами. При отделении одного из фосфатов АТФ превращается в АДФ (аденозиндифосфат) и выделяется энергия, которая может быть использована клеткой для тех или иных полезных "работ". Чтобы синтезировать АТФ из АДФ, нужно затратить энергию. Добыча этой энергии, необходимой для синтеза АТФ, составляет одну из основных "жизненных задач", стоящих перед клеткой. Глава 1, стр. 56, 66.

АТФ-синтазы - разнообразные ферменты, синтезирующие АТФ из АДФ и фосфата с использованием того или иного вида энергии - например, энергии химических связей, выделяющейся в ходе какой-либо окислительно-восстановительной реакции, или энергии электрохимического потенциала на клеточной мембране (за счет разной концентрации ионов по обе стороны мембраны образуется разность потенциалов, которую клетка может использовать для синтеза АТФ). Стр. 93.

аэробы - организмы, которым для жизни нужен кислород,

бактерии - одно из трех надцарств живой природы (наряду с археями и эукариотами). Вместе с археями составляют группу прокариот. Глава 2, стр. 94.

белки - биополимеры, молекулы которых представляют собой цепочки из множества последовательно соединенных аминокислот. Химические свойства белка определяются его первичной структурой, то есть последовательностью аминокислот. Эта последовательность закодирована в молекуле ДНК, причем каждая аминокислота кодируется тремя нуклеотидами, составляющими триплет, или кодон. О свойствах белков см. главу 4, стр 205.

бластомеры - клетки эмбриона на ранних стадиях развития. Образуются в результате дробления зиготы (оплодотворенного яйца) у животных. Глава 5, стр. 280-284.

гамета - половая клетка. Например, сперматозоид или яйцеклетка. Гаметы гаплоидны (содержат одинарный набор хромосом). В результате слияния двух половых клеток (оплодотворения) образуется диплоидная клетка - зигота, гаплоидный - содержащий одинарный набор хромосом. В жизненном цикле животных гаплоидная фаза представлена половыми клетками (гаметами - яйцеклетками и сперматозоидами). В результате слияния двух половых клеток (оплодотворения) образуется диплоидная клетка - зигота. Гаплоидная клетка образуется либо в результате редукционного деления (мейоза) диплоидной клетки, либо в результате обычного деления другой гаплоидной клетки.

ген - участок ДНК (или РНК), кодирующий какой-нибудь белок (при помощи генетического кода) или функциональную молекулу РНК. Ген обычно состоит из кодирующих и некодирующих участков. Некодирующие участки могут выполнять регуляторные функции (промоторы, сайты связывания транскрипционных факторов и др). От них зависит, в каких обстоятельствах и с какой интенсивностью будет работать (транскрибироваться) данный ген.

генетический код - универсальный для всех живых существ способ, посредством которого первичная структура белковой молекулы (последовательность аминокислот) "кодируется" в молекуле ДНК (или РНК). Каждая аминокислота кодируется тремя нуклеотида- ми (кодоном, или триплетом). Нуклеотидов в ДНК всего 4, поэтому они могут образовывать 64 разных триплета. Аминокислот в белках всего 20, поэтому генетический код "избыточен": многие аминокислоты кодируются не одним, а несколькими взаимозаменимыми кодонами. Считывание генетической информации проиходит в два этапа: транскрипция и трансляция. Стр. 77.

Стандартный генетический код

Основания ДНК (РНК) A - Adenine A Аденин, Т - Thymine TТимин, (U - Uracil У Урацил), G - Guanine Г Гуанин, С - Cytosine Ц Цитозин

Аминокислоты



геном - в настоящее время под этим термином обычно понимают совокупность всех молекул ДНК, имеющихся в данной клетке и полученных ею "по наследству" от родительской клетки. Изначально термин был предложен для обозначения совокупности всех генов, характерных для данного вида живых существ. Это было в те времена, когда структура ДНК и генетический код еще не были расшифрованы и никто не знал, что в хромосомах помимо собственно "генов" имеется много некодирующих участков. Когда говорят о геноме многоклеточного организма (например, о геноме человека), имеют в виду тот геном, который характерен для половых клеток или оплодотворенного яйца. В соматических клетках многоклеточного организма геном может претерпевать изменения и поэтому быть не совсем таким, как в половых клетках. У РНК-содержащих вирусов геном "сделан" не из ДНК, а из РНК.

генотип - совокупность наследственной информации, полученной организмом от родителей. Или, иначе, совокупность всей наследственной информации, содержащейся в геноме. Обычно генотипом называют только информацию, записанную в форме последовательности нуклеотидов в молекулах ДНК. Некоторая часть наследственной информации передается потомству другими способами (например, с молекулами РНК, с белками цитоплазмы, в виде эпигенетических модификаций ДНК), но все это обычно в понятие "генотип" не включают,

герма - "генеративная" часть организма, передающая свой наследственный материал потомству. У животных это половые клетки и их предшественники. См. также "Сома". Глава 4, сюжет "Появлению многоклеточности мешают обманщики", стр. 225.

гетерозиготный - имеющий два разных аллельных варианта данного гена (см. аллель),

гетеротрофы - организмы, питающиеся готовой органикой, не способные превращать неорганический углерод в органические соединения. Они являются по сути дела нахлебниками автотрофов: они целиком и полностью зависят от производимых ими органических соединений. Глава 2, стр. 95.

гипермутирование соматическое - внесение многочисленных изменений (мутаций) в определенные участки генома соматических клеток. Осуществляется специализированными белками с целью создания методом "проб и ошибок" нового гена с определенными свойствами. Например, таким образом создаются гены новых защитных белков - антител - в ходе выработки приобретенного иммунитета. Глава 7, стр. 388.

гомозиготный - имеющий два одинаковых аллельных варианта данного гена (см. аллель).

горизонтальный обмен генами (горизонтальный перенос) - обмен генетическим материалом между организмами (в отличие от обычной вертикальной передачи генов от родителей потомкам). Широко распространен у прокариот и одноклеточных эукариот (протистов). У многоклеточных эукариот встречается реже, но тоже играет важную роль. Глава 8, раздел "Горизонтальный обмен генами", стр. 420.

градуалистическая эволюция - постепенная, идущая путем отбора небольших изменений. См. раздел "Постепенно или скачками?" в главе 6, стр. 357.

дивергенция - расхождение видов (или признаков) в процессе эволюции. Глава 8, стр. 428.

диплоидный - содержащий двойной набор хромосом. Диплоидная клетка образуется либо в результате деления (митоза) другой диплоидной клетки, либо в результате слияния двух гаплоидных половых клеток (оплодотворение).

ДНК - биополимер, молекула которого представляет собой цепочку из множества последовательно соединенных дезоксирибонуклеотидов (см. врезку "ДНК и РНК - хранители наследственной информации" в главе 1). Обычно две комплементарные цепочки ДНК объединяются вместе, образуя двойную спираль.

ДНК-полимераза - фермент, осуществляющий репликацию (копирование, размножение) молекул ДНК. Стр. 78.

домен - функциональная часть (блок) белковой молекулы. Белковая молекула может содержать один или несколько разных доменов, выполняющих разные функции,

зигота - диплоидная клетка, образовавшаяся из слияния двух гаплоидных половых клеток. Например, оплодотворенное яйцо, значимые и незначимые нуклеотидные замены - как известно, каждая аминокислота в молекуле белка кодируется тремя нуклеотидами в молекуле ДНК. Однако для построения белков используется всего 20 аминокислот, тогда как возможных триплетов - комбинаций из трех нуклеотидов - насчитывается 64. Поэтому говорят, что генетический код "избыточен". В результате большинство аминокислот кодируется не одним, а несколькими разными триплетами. Из-за этого некоторые нуклеотидные замены в кодирующей части гена не приводят к замене аминокислоты в белке (см. генетический код). Такие замены называют незначимыми или синонимичными,

иммуноглобулины - обширная группа (надсемейство) белков, основная функция которых состоит в специфическом распознавании и связывании других молекул. К этой группе относятся, в частности, антитела. Белки надсемейства иммуноглобулинов играют важную роль не только в иммунной системе, но и в межклеточных взаимодействиях, поддержании целостности многоклеточного организма, индивидуальном развитии и т. д. Глава 9, раздел "Взаимное узнавание", стр. 488.

импринтинг геномный - модификация наследственного материала без изменения первичной структуры (последовательности нуклеотидов) ДНК, в частности, путем метилирования нуклеотидов. Может приводить к изменению активности тех или иных генов и, как следствие, к наследственному изменению фенотипа без изменений генотипа. Глава 8, стр. 458.

ингибитор - вещество, останавливающее (замедляющее, подавляющее) какой-либо химический (биохимический, биологический) процесс.

интроны - некодирующие вставки в генах. Обильны в генах эукариот, редки в генах прокариот. Во время транскрипции ген считывается целиком, вместе с интронами. Получившаяся "незрелая" матричная РНК подвергается сплайсингу ("нарезке"), в ходе которого интроны удаляются, стр. 153.

канализированность эволюции - ограниченность числа возможных ("разрешенных") эволюционных преобразований, придающая эволюции частичную предсказуемость. См. сюжет "Пути эволюции предопределены на молекулярном уровне" в главе 4, стр. 213.

кодон - последовательность из трех нуклеотидов, кодирующая одну аминокислоту (см. генетический код),

комплементарность - свойство нуклеотидов, из которых состоят ДНК и РНК, связываться только с определенными (комплементарными) нуклеотидами другой (противоположной) цепочки ДНК или РНК. Нуклеотид А связывается с Т (или У, если речь идет об РНК), Г - с Ц. Свойство комплементарности лежит в основе процессов репликации (копирования) ДНК и РНК, транскрипции, трансляции и др. См. врезку "ДНК и РНК - хранители наследственной информации" в главе 1. Глава 7, стр. 374.

конверсия генов - целенаправленное изменение генов (их нуклеотидных последовательностей), приводящее к превращению одного аллеля в другой. Может осуществляться, например, путем замены участков гена другими, похожими, участками или с помощью перекомбинирования генетических фрагментов-заготовок. Стр. 390.

конъюгация - своеобразный половой процесс у прокариот и инфузорий. Два одноклеточных организма соединяются, обмениваются наследственным материалом и расходятся. Глава 7, раздел "Контролируемая перестройка генома у инфузорий". Стр. 392.

креационизм - вера в божественное сотворение живых существ. Существует очень много версий креационизма, но почти все они сходятся в одном - в отрицании факта эволюции. Существуют версии, претендующие на "научность", однако в действительности креационизм не является научной теорией, в частности из-за отсутствия проверяемых следствий. Подробная и весьма корректная информация о креационизме приведена в статье "креационизм" в русской Википедии: http://ru.wikipedia.org/wiki/ .

мейоз - "редукционное деление" эукариотической клетки, в результате которого число хромосом сокращается вдвое. Из диплоидной родительской клетки (с двойным набором хромосом) получаются четыре гаплоидных клетки с одинарным набором хромосом. У животных таким путем образуются половые клетки - яйцеклетки и сперматозоиды. Стр. 95, 216.

мембрана (клеточная, или плазматическая) - полупроницаемая оболочка, окружающая живую клетку. У всех живых существ основу мембраны составляют два слоя молекул из класса липидов (жиров), но липиды эти могут быть разными. У бактерий и эукариот мембранные липиды представляют собой эфиры глицерина и жирных кислот, а у архей - эфиры глицерина и терпеноидных спиртов. Стр. 67.

метаболизм - обмен веществ. Совокупность всех химических процессов, происходящих в организме,

метагеномный анализ - метод изучения разнообразия организмов (чаще всего - микробов). Берут пробу из какой-либо среды (будь то морская вода или содержимое человеческого кишечника), выделяют оттуда всю ДНК и секвенируют (определяют последовательность нуклеотидов). Затем по этим нуклеотидным последовательностям, используя имеющиеся генетические банки данных, определяют, какие организмы присутствуют в пробе. См. сюжет "Кишечная микрофлора превращает человека в "сверхорганизм" в главе 3, стр. 171.

метаногены - хемоавтотрофные прокариоты (археи), выделяющие в качестве конечного продукта жизнедеятельности метан (СН 4). Глава 2, стр. 101.

метилирование ДНК - прикрепление метильных групп (-СН 3) к некоторым нуклеотидам в молекуле ДНК, осуществляемое специальными ферментами ДНК-метилтрансферазами. Используется, в частности, как один из способов регуляции активности генов. Глава 7, стр. 399. Глава 8, стр. 457.

митоз - деление эукариотической клетки, в результате которого из одной родительской клетки получаются две дочерние с таким же числом хромосом, как и у родительской. Например, митоз диплоидной клетки приводит к формированию двух диплоидных клеток. Стр. 216.

митохондрии - органеллы эукариотической клетки, ответственные за кислородное дыхание. Являются прямыми потомками симбиотических прокариот из группы альфапротеобактерий. Глава 3.

мобильные генетические элементы (МГЭ) - фрагменты ДНК, способные перемещаться с места на место в пределах генома. К ним относятся транспозоны и ретротранспозоны. Глава 8, раздел "Вирусы и мобильные генетические элементы", стр. 438.

модификация (адаптивная) - (адаптивное, то есть приспособительное, полезное) изменение строение клетки или многоклеточного организма, происходящее при неизменном геноме. В основе (адаптивных) модификаций лежит регуляция работы генов: в ответ на те или иные внешние стимулы (сигналы) одни гены начинают работать (экспрессироваться) сильнее, другие слабее. Стр. 241-253.

модификационная изменчивость - изменения строения клетки или многоклеточного организма, основанные не на мутациях, а на модификациях (в том числе адаптивных); разнообразие особей, возникающее на основе таких изменений, морфология - форма, строение, структура организма, а также раздел биологии, изучающий все перечисленное,

мутация - изменение последовательности нуклеотидов в молекуле ДНК (или РНК, если речь идет об РНК-содержащих вирусах). Мутации возникают в силу разных причин - ошибок репликации, перемещений мобильных генетических элементов, жесткого излучения, воздействия химически активных веществ и т. д. Существуют также механизмы "целенаправленного" мутирования, например, при формировании генов новых защитных белков в ходе иммунного ответа. Глава 7, стр. 373.

мутация гомеозисная - наследственное изменение, в результате которого свойства одних частей тела проявляются у других частей. В основе гомеозисных мутаций лежат изменения генов - ключевых регуляторов развития, таких как Нох -гены. Например, у мухи могут вырасти ноги на сегментах брюшка, где в норме их не должно быть, или лишние крылья на заднем сегменте груди. У человека тоже иногда встречаются гомеозисные мутации (например, лишняя пара ушных раковин на шее). У некоторых пород домашних коз такие "лишние уши" даже стали нормой. Стр. 355.

макромугация - крупная мутация, меняющая строение организма настолько, что он может (гипотетически) сразу превратиться в другой вид. См. раздел "Постепенно или скачками" в главе 6. Стр. 357.

мутагенез - появление мутаций.

нуклеотид - составной элемент, мономер, "кирпичик" молекулы РНК (рибонуклеотид) и ДНК (дезоксирибонуклеотид). Каждый нуклеотид состоит из трех частей. Первая из них - фосфорная кислота (фосфат) - неорганическое вещество, которого довольно много в земной коре и океанах. Вторая - сахар рибоза (РНК) или дезоксирибоза (ДНК). Третья - азотистое основание. В состав РНК входит четыре азотистых основания - А (аденин), У (урацил), Г (гуанин) и Ц (цитозин); соответственно, существует четыре вида рибонуклеотидов - аденозин, уридин, гуанозин, цитидин. В состав ДНК тоже входят четыре азотистых основания. Вместо урацила используется тимин (Т); остальные три основания такие же, как в РНК. Глава 1, стр. 56, 75.

онтогенез - индивидуальное развитие организма. Например, развитие многоклеточного животного из оплодотворенного яйца. См. главу 5.

пептиды - обычно так называют белки с короткими молекулами (состоящими из небольшого числа аминокислот),

пластиды - органеллы растительной клетки, отвечающие за фотосинтез. Являются потомками симбиотических цианобактерий. Глава з, стр. 144.

полиморфизм - разнообразие вариантов. Разнообразными могут быть, например, варианты генов (аллели) в популяции - тогда говорят о полиморфном гене; варианты какого-нибудь морфологического признака (такого как окраска) - тогда говорят о полиморфном признаке. Словосочетание "полиморфный вид" означает, что особи, составляющие вид, не одинаковы, разнообразны. Все существующие виды полиморфны, но степень полиморфизма может быть разной,

полиплоидный - содержащий множество хромосомных наборов в одной клетке (см. также гаплоидный и диплоидный),

прокариоты - живые организмы, не имеющие клеточного ядра. Их геном находится прямо во внутренней среде клетки (цитоплазме) и обычно имеет вид единственной кольцевой молекулы ДНК (кольцевой хромосомы). У прокариот нет настоящего полового размножения, точнее говоря, в их жизненном цикле отсутствует фаза образования половых клеток и их попарного слияния в клетку с двойным набором хромосом - зиготу. У прокариот также нет внутриклеточных органелл, окруженных двойными мембранами, - митохондрий и пластид. К прокариотам относятся бактерии и археи. Глава 2, стр. 94.

промотор - участок ДНК, к которому прикрепляется фермент РНК-полимераза перед началом транскрипции. Промотор входит в состав "регуляторной области" гена. Ген без промотора не может быть "считан" (транскрибирован). От свойств промотора зависит, как и когда будет работать ген. Стр. 382.

простейшие - то же, что протисты.

протисты - общее наименование всех одноклеточных эукарот.

псевдогены - неработающие гены, вышедшие из строя в результате мутаций или изначально "молчащие" (например, ретропсевдогены, образовавшиеся в результате деятельности обратной транскриптазы и не имеющие промотора). Стр. 390, 455.

пунктуалистическая эволюция - идущая по принципу "прерывистого равновесия". Длительные периоды относительной стабильности вида чередуются с краткими периодами быстрых изменений. См. раздел "Постепенно или скачками?" в главе 6, стр. 357.

рекомбинация - обмен участками между молекулами ДНК (или РНК). Стр. 157, 377, 387, 405, 432.

репарация - "починка" ДНК, исправление всевозможных ошибок (мутаций, разрывов), возникающих в молекуле ДНК в силу различных причин. Репарация осуществляется специальными ферментами. Глава 9, стр. 502-504.

репликация - удвоение, размножение, копирование. Обычно термин применяется к процессу копирования молекул ДНК. В результате репликации из одной двухцепочечной молекулы ДНК ("двойной спирали") получаются две точно такие же. Иногда в процессе репликации происходят ошибки - мутации. Глава 7, стр. 375.

репродуктивная изоляция - невозможность (или ограниченная возможность) представителей двух разных групп организмов скрещиваться между собой и (или) давать плодовитое потомство. Репродуктивная изоляция считается одним из важных критериев вида. Если представители двух группировок (популяций) не скрещиваются между собой, то это, скорее всего, разные виды. Если они делают это часто и охотно и производят полноценное потомство - значит, они относятся к одному и тому же виду. Впрочем, нельзя абсолютизировать этот критерий.

ретровирусы - группа РНК-содержащих вирусов, которые при помощи механизма обратной транскрипции встраивают копию своего генома в геном хозяйской клетки и размножаются вместе с ним. Родственны ретротранспозонам. Стр. 441-442.

ретропсевдоген - участок ДНК с последовательностью нуклеотидов, идентичной кодирующей части какого-нибудь гена, обычно неактивный, неработающий, который возник в результате деятельности обратной транскриптазы. Глава 8, стр. 455.

ретротранспозон - мобильный генетический элемент, размножающийся при помощи обратной транскрипции. Глава 8, сюжет "Вирусы и мобильные элементы: кто от кого произошел",

рецептор - белок, который избирательно распознает определенное вещество (называемое лигандом), связывается с ним и тем или иным способом "сообщает" о случившемся другим белкам или клеткам. Обычно рецепторные белки располагаются на клеточной мембране, пронизывая ее насквозь. Снаружи от мембраны находится рецепторная часть белковой молекулы. Если она "поймает" лиганд, это приводит к изменению структуры той части молекулы, которая находится по другую сторону мембраны - в цитоплазме. По этому изменению клетка "узнает", что химический сигнал получен. Глава 9, раздел "Взаимное узнавание".

рибозим - молекула РНК с каталитической (ферментативной) функцией, способная осуществлять активную "работу" в клетке. Стр. 58.

рибосома - молекулярная "машинка" для трансляции (синтеза белка на матрице мРНК). Состоит из рРНК и рибосомных белков. Стр. 70.

РНК - рибонуклеиновая кислота, биополимер, молекула которого представляет собой цепочку из множества последовательно соединенных рибонуклеотидов (см. врезку "РНК" в главе 1, стр. 56). матричная (мРНК) - РНК, образующаяся в результате транскрипции (считывания гена). "Незрелая" мРНК содержит интроны и другие некодирующие фрагменты, которые затем удаляются в ходе сплайсинга. Стр. 75, 77.

транспортная (тРНК) - функциональная РНК (рибозим), играющая ключевую роль в "прочтении" генетического кода в ходе трансляции (синтеза белка). Подносит нужные аминокислоты к рибосоме, осуществляющей синтез белка. См.: Антикодон. Стр. 61.

рибосомная (рРНК) - функциональная РНК (рибозим), входящая в состав рибосом. Играет ключевую роль в процессе трансляции (синтеза белка). Стр. 59, 70.

РНК-полимераза - фермент, синтезирующий молекулу РНК на матрице. Матрицей может служить другая молекула РНК или ДНК. В первом случае говорят об РНК-зависимых РНК-полимеразах, во втором - о ДНК-зависимых. Глава 1, раздел "РНК обзаводится помощниками", стр. 70. сайт связывания транскрипционного фактора - короткий участок ДНК, к которому может прикрепиться белок - транскрипционный фактор (ТФ). Сайты связывания ТФ находятся в регуляторных областях генов. Разные ТФ имеют разные сайты связывания. Степень специфичности варьируется: одни ТФ прикрепляются только к строго определенной последовательности нуклеотидов, другие довольствуются расплывчатым "мотивом", в котором только некоторые нуклеотиды являются ключевыми. Глава 8, раздел "Вирусы и мобильные генетические элементы", стр. 438.

секвенирование - экспериментальное определение последовательности нуклеотидов в молекуле ДНК или РНК.

симпатрическое видообразование - разделение исходного вида на два (или более) при обитании на одной и той же территории без физических изолирующих барьеров. См. сюжет "Эволюция на островах идет параллельными путями" в главе 6, стр. 335.

синапс, синаптический контакт - специализированная зона контакта между отростками нервных клеток и другими клетками, нервными, мышечными или иными, обеспечивающая передачу информационного сигнала,

синтетическая теория эволюции (СТЭ) - система эволюционных взглядов, оформившаяся в середине XX века в результате синтеза дарвиновских идей и достижений генетики. Представляет собой важный этап развития эволюционного учения. Некоторые генетические и эволюционные закономерности приобрели в СТЭ характер "нерушимых догм", что потребовало в дальнейшем внесения многочисленных изменений и уточнений в теорию. "Развенчанию" этих догм посвящены многие разделы данной книги. Стр. 16.

сома - "вегетативная" часть организма, которая при размножении обычно не передает свой наследственный материал потомству. Например, у животных "соматическими" являются все клетки, кроме половых. Однако при вегетативном размножении (например, у растений) сома передает свои гены потомству. См. также Герма. Глава 4, сюжет "Появлению многоклеточности мешают обманщики". Стр. 225.

сперматоцит - мужская половая клетка животных в период ее роста и созревания. Стр. 485.

сплайсинг - процесс посттранскрипционной обработки мРНК, в ходе которого происходит удаление интронов. В результате "незрелая" мРНК с интронами превращается в "зрелую" мРНК без интронов, которую уже можно использовать в качестве матрицы для синтеза белка (трансляции). альтернативный сплайсинг - см. одноименную врезку в главе 9, стр. 491.

строматолиты - слоистые минеральные образования, формирующиеся в результате жизнедеятельности микробных сообществ. Стр. 90, 258.

сульфатредукторы - хемоавтотрофные бактерии, живущие за счет реакции восстановления сульфатов. Потребляют сульфаты и восстановитель (например, молекулярный водород), выделяют восстановленные соединения серы (например, сероводород). Стр. 108-116.

теломеры - концевые участки хромосом у эукариот. У прокариот хромосомы не линейные, а кольцевые, поэтому у них нет тело- мер. При каждой репликации теломеры укорачиваются, поэтому на определенных этапах жизненного цикла их приходится восстанавливать - достраивать при помощи специальных ферментов теломераз. Согласно одной из теорий, укорачивание теломер в течение жизни многоклеточного организма является причиной старения (так называемая "теломерная теория старения"). На самом деле, скорее всего, причины старения гораздо сложнее и разнообразнее. Стр. 154.

трансгенный (организм) - генетическая химера, организм, в геном которого были вставлены чужеродные гены. Например, инсулин для диабетиков сегодня производится в промышленных количествах трансгенными бактериями - кишечными палочками, которым пересадили человеческий ген инсулина. Стр. 400.

транскрипция - "считывание генетической информации", синтез РНК на матрице ДНК. Осуществляется ферментом ДНК-зависимой РНК-полимеразой. Полученная молекула РНК в дальнейшем может быть использована для синтеза белка (трансляции). Стр. 77.

обратная транскрипция - синтез ДНК на матрице РНК, переписывание генетической информации из РНК в ДНК. Осуществляется ферментом обратной транскриптазой. Используется некоторыми вирусами (ретровирусами) и ретротранспозонами для встраивания в геном хозяина, а также эукариотами - для восстановления кончиков хромосом (теломер). Путем обратной транскрипции образуются также ретропсевдогены.

транскрипционный фактор - белок, регулирующий экспрессию (активность, уровень транскрипции) каких-либо генов. Транскрипционный фактор узнает определенную последовательность нуклеотидов в регуляторной области гена и прикрепляется к ней. Это в свою очередь либо облегчает, либо, наоборот, затрудняет работу РНК-полимеразы - фермента, осуществляющего транскрипцию (считывание) генов. Глава 8, раздел "Вирусы и мобильные генетические элементы". Стр. 446.

трансляция - синтез белка. Осуществляется особыми молекулярными "машинками" - рибосомами, причем в качестве "матрицы" используется мРНК, полученная в результате транскрипции. Каждые три нуклеотида мРНК (см. кодон) кодируют одну аминокислоту. Аминокислоты присоединяются к синтезируемой молекуле белка по одной при помощи тРНК. Стр. 59.

транспозон - мобильный генетический элемент, перемещение и размножение которого осуществляются при помощи фермента транспозазы без участия обратной транскрипции. Глава 8, стр. 445.

фенотип - строение организма, совокупность всех морфологических, физиологических, биохимических и прочих признаков,

фермент - белок, выполняющий каталитическую функцию, то есть осуществляющий (катализирующий) какую-то химическую реакцию. Молекулы РНК, обладающие такими свойствами, называют рибозимами.

фиксация углерода (фиксация CO 2) - включение неорганического углерода (источником которого является обычно углекислый газ С0 2) в состав органических соединений. См. сюжет "Самая главная химическая реакция" в главе 2, стр. 102.

филогения - родственные отношения между группами живых организмов ("кто от кого произошел") и их изучение,

фотоавтотрофы - автотрофы, получающие необходимую для жизни энергию из солнечного света. Глава 2, стр. 95. аноксигенные фотоавтотрофы в ходе фотосинтеза выделяют не кислород, а другие "отходы жизнедеятельности", чаще всего серу или сульфаты. Нуждаются в восстановленных соединениях (чаще всего в сероводороде). Глава 2, стр. 95. оксигенные фотоавтотрофы в ходе фотосинтеза выделяют кислород. Не нуждаются в восстановленных соединениях серы, в качестве "донора электрона" при фотосинтезе используют обычную воду. Глава 2, стр. 95.

хемоавтотрофы - автотрофы, получающие необходимую для жизни энергию из какой-либо окислительно-восстановительной реакции. Глава 2, стр. 95.

хромосома - молекула ДНК, несущая наследственную информацию, в комплексе с разнообразными структурными белками, которые обеспечивают ее укладку, упаковку и т. п. У прокариот обычно имеется одна кольцевая хромосома, редко две, кроме того, у них часто встречаются дополнительные маленькие кольцевые хромосомы, называемые плазмидами. У эукариот имеется несколько линейных, не замкнутых в кольцо хромосом, цитоплазма - внутренняя среда живой клетки, ограниченная клеточной мембраной.

экзон - кодирующий участок гена. У эукариот большинство генов содержит несколько экзонов, между которыми располагаются интроны. В ходе сплайсинга из незрелой мРНК удаляются интроны, а экзоны "склеиваются" вместе. Глава 9, раздел "Взаимное узнавание", стр. 491.

экосистема - природный комплекс, образованный живыми организмами и средой их обитания, связанный в единое целое обменом веществ и энергии. Например, пруд или лес вместе со всеми своими обитателями,

экспрессия гена - то же, что "работа" гена. Если ген не работает (не подвергается транскрипции), говорят, что он не экспрессируется. Если количество считываемых с гена мРНК увеличивается, говорят об усилении экспрессии, и т. д.

эндемичный - обитающий только в данном месте (районе),

эндогенные ретровирусы - геномы ретровирусов, встроенные в геномы высших организмов и передающиеся по наследству вместе с остальными генами. Глава 8, стр. 454.

эпигенетическое наследование - передача наследственной информации, записанной не в виде последовательности нуклеотидов в молекулах ДНК, а иными способами, например, при помощи метилирования нуклеотидов, метилирования и ацетилирования гистонов - белков, на которые "наматывается" ДНК в клетке. Глава 8, раздел "Эпигенетическое наследование". Стр. 457.

эукариоты - одно из трех надцарств живой природы (наряду с бактериями и археями). Эукариоты - организмы, в чьих клетках есть ядро и окруженные двойной мембраной органеллы: митохондрии, служащие для кислородного дыхания, и пластиды, служащие для фотосинтеза (последние характерны только для растительных клеток). Доказано, что митохондрии и пластиды являются потомками симбиотических бактерий (см. главу 3). К эукариотам относятся разнообразные одноклеточные формы, обычно называемые простейшими или протистами (амебы, жгутиконосцы, инфузории, радиолярии и др.), а также многоклеточные - грибы, растения и животные. В жизненном цикле эукариот есть чередование гаплоидной и диплоидной фаз: пара гаплоидных (с одинарным набором хромосом) половых клеток сливается, образуя диплоидную (с двойным набором хромосом) клетку - зиготу. Это слияние двух половых клеток называют оплодотворением. Затем в какой-то момент происходит редукционное деление, или мейоз, в результате которого из диплоидной клетки образуются четыре гаплоидные. Глава 2, стр. 94.


АЛЕКСАНДР МАРКОВ РОЖДЕНИЕ СЛОЖНОСТИ