Характеристики состояния пылевато глинистых грунтов. Глинистые грунты. Измеряемые характеристики грунтов

Постройка дома на пылевато-глинистом грунте имеет свои особенности и требования. В этой статье вы узнаете о видах пылевато-глинистого грунта, их особенностях и типах фундаментов, которые можно закладывать на таком типе грунта.

Пылевато-глинистые грунты относятся к пучинистым грунтам и могут накапливать влагу. При низкой температуре влага замерзает (кристаллизируется) и превращается в лед, увеличиваясь в объеме. Этот процесс называется силой пучения, которая приподнимает дома, дает напряжение на нижние и боковые стены строения, разрушает некачественные кладки кирпича и блоков основания. В знойный период пучинистая почва оседает.

Виды пылевато-глинистых грунтов:

  • грубопесчаные и мелкопесчаные супеси (рыхлые горные породы).
  • суглинок (почва с преимущественным содержанием глины и значительным количеством песка).
№ п/п Виды грунта Содержит частиц, % Число пластичности, Jp Диаметр раскатываемого шнура из грунта, мм
1 Глины >30 >0,17 <1
2 Суглинок <10% От 0,07 до 0,17 1-3
3 Супесь от 10-30 От 0,01 до 0,07 >3
4 Песок <30 Не пластичный Не раскатывается

Примечание: Jр (число пластичности) определяется в лаборатории.

Глинистые частицы – активные компоненты, обладающие чешуйчатой формой. Они придают грунту связность, пластичность, набухаемость, липкость, водонепроницаемость.

Основные отличия связных и несвязных грунтов

Свойства грунтов Связные пылевато-глинистые грунты Пески (непучинистые материалы)
W (природная влажность грунта) колеблется от 3 до 600% от 0 до 40%
Состояния грунта Твердое, мягкое, текучее Сыпучее
Почва с ростом W Меняют свои свойства постепенно, есть время предотвратить аварию Мгновенное ухудшение свойств
По мере высыхания Оседает Не уменьшается в объеме и трескается
Утрамбовка почвы Медленно оседают (до 3 лет) Деформируются сразу после приложения нагрузки
Водопроницаемость Практически непроницаемы Пропускают влагу во всех состояниях

Возведение конструкций на пылевато-глинистом грунте

Пылевато-глинистый грунт является влагосодержащим, подвергается влиянию низкой температуры, увеличивается в объеме и поднимает фундаментные конструкции. Неравномерность подъема накапливается. Затем, конструкции подвергаются деформациям и разрушаются. Легкие малоэтажные помещения на таком грунте страдают больше всего.

Затратные фундаменты (глубокие монолитные конструкции) не рентабельны для постройки малоэтажных домов. Решить вопрос о возведении фундамента на пучинистом грунте можно с помощью мелкозаглубленных оснований (погруженность в грунт составляет 0,2-0,5 м) или незаглубленных фундаментов (на поверхности).

В отличие от заглубленного фундамента, заложенного в пучинистый грунт, мелкозаглубленные основания меньше подвержены касанию грунта. Незаглубленные фундаменты полностью защищены от вспучивания.

Конструирование малозаглубленных фундаментов

  • Ленточные фундаменты несущих стен и перегородок объединяются в сплошную горизонтальную раму, распределяющую нагрузки.
  • Столбчатые конструкции подразумевают формирование рамы из бетонных балок, жестко соединяющихся между собой на опорах.

Если пылевато-глинистый грунт не предполагает высокой степени вспучивания, то фундаментные детали устанавливаются свободно, не соединяясь между собой.

Имея дешевые стройматериалы (песок, гравий, щебенка, балласт) или скалистые грунты вблизи возведения фундамента, под основанием целесообразно сделать уплотняющий слой толщиной на 2/3 нормативной высоты замерзания.

На почве с глубиной замерзания до 1,7 на легковозводимых фундаментах можно строить небольшие здания из следующих стройматериалов:

  • дерева;
  • кирпича и камня;
  • монолитных панелей;
  • железобетонных блоков.

Использование мелкозаглубленных конструкций сокращает расход бетона на 50-80%, трудовые затраты — на 40-70%.

1. Материковый грунт

2. Бетонная отмостка

3. Слой гидроизоляции (рубероид)

4. Капиллярная гидроизоляция (ПЭ пленка)

5. Гумусный слой

6. Обратная засыпка

7. Забутовка из ПГС (пескогравийная смесь)

8. Ж/б лента фундамента

9. Арматура

Дренажная конструкция

  • Точечный или линейный водоотвод, направленный в канализацию. В период дождей или оттепели с поверхности, окружающей здание вода не будет накапливаться на участке.
  • Глубинный водоотвод. Установка подземной глубинной конструкции включает в себя водоприемник, дренажный колодец. Затем выкапывают траншею под закрытый коллектор, передающий воду из труб в водоприемник.
  • По периметру объекта устанавливают бетонные или асфальтные отмостки, толиной 1 м и наклоном 0,03.

В процессе гидроизоляции фундамента не следует проводить монтаж ввода системы водоподачи с нагорной стороны помещения. При эксплуатации конструкций не менять условия, проектирования быстровозводимых фундаментов.

Наружное вертикальное и горизонтальное утепление мелкозаглубленного фундамента

  • Касательное (боковое) утепление

Отмостка (полоса по периметру конструкции, обладающая прочной водонепроницаемой поверхностью) с утеплителем улучшают температурный режим в зоне фундамента, защищая здание от перепада температуры.

Тепловую изоляцию обеспечивают листы экструдированного пенополистирола (ЭПП) либо напыление пенополиуретаном.

  • Горизонтальное утепление

Под фундаментами организовываются уплотняющие почву подушки толщиной 20-30 см из крупного гравельного песка, щебенки или шлака. Они заменяют собой глинистый грунт на непучистый. Последний вариант влияет на снижение неравномерных деформаций здания. Глубина и высота слоя вычисляется по формулам, известным опытным технологам.

Пылевато-глинистые грунты относятся к пучинистым грунтам. Поэтому во время сезонных изменений они влияют на основание здания — поднимают фундамент или оседают, разрушая строение. Для строения на этом виде почвы применяют малозагубленные ленточные и столбчатые фундаменты.

К вычисляемым характеристикам глинистого грунта кроме плотности сухого грунта ρ d , пористости n , коэффициента пористости е и степени влажности S r , которые определяются аналогично песчаным грунтам, относятся число пластичности I Р и показатель текучести I L . Данные характеристики также считаются классификационными, т.к. по I Р и I L производят классификацию грунтов. Число пластичности определяется по формуле: I P = W L - W Р . Эта характеристика косвенно отражает количество глинистых частиц в грунте и используется для определения наименования глинистого грунта по табл. 5.3.

Таблица 5.3

Типы глинистых грунтов

Показатель текучести I L определяется по формуле: I L =( W - W Р )/ I P , где w - природная влажность грунта в долях единицы.

Показатель текучести используется для определения состояния (консистенции) глинистого грунта по табл. 5.4.

Таблица 5.4

Разновидности глинистых грунтов

Разновидности глинистых грунтов

по консистенции

Показатель текучести

I L < 0

пластичные

0 ≤ I L ≤ 1

I L > 1

Суглинки и глины:

I L < 0

полутвердые

0 ≤ I L ≤ 0,25

тугопластичные

0,25 < I L ≤ 0,50

мягкопластичные

0,50 < I L ≤ 0,75

текучепластичные

0,75< I L ≤ 1,00

I L > 1,00

По окончании лабораторной работы определяют наименование и состояние глинистого грунта, а также его расчетное сопротивление по табл. 5.5 при проектировании оснований зданий и сооружений.

Таблица 5.5

Расчетные сопротивления r0 глинистых (непросадочных) грунтов

Значения всех вычисляемых характеристик грунта записывают в журнал.

По окончании лабораторной работы определяют наименование и состояние глинистого грунта, а также его расчетное сопротивление по табл. 2.3 при проектировании оснований зданий и сооружений или условное сопротивление по табл. 5.6 при проектировании оснований мостов и труб.

Таблица 5.6

Условное сопротивление глинистых грунтов

Примечания:

1. Для промежуточных значений JP и е, R0 определяется по интерполяции.

2. При значениях числа пластичности J P в пределах 5 - 10 и 15 - 20 следует принимать значения R 0 , приведенные в таблице, соответственно для супесей, суглинков и глин.

Вопросы для самоконтроля

    Что такое плотность частиц грунта?

    Как определяется плотность глинистого грунта?

    Что такое влажность грунта и как она определяется?

    Как определяется влажность на границе текучести?

    Что такое граница раскатывания и как она определяется?

    Что такое число пластичности и для чего оно определяется?

    Для чего определяется показатель текучести?

    Как определяется наименование и состояние (консистенция) глинистого грунта?

    Как влияет влажность глинистого грунта на его расчетное (условное) сопротивление?

    Что необходимо знать для определения расчетного (условного) сопротивления глинистого грунта?

1.4.2. Физические свойства грунтов

Свойства грунтов следует характеризовать количественными показателями, которые зависят от состава, строения и состояния грунтов. Они определяются из опытов, чаще всего с образцами грунта, отобранными в полевых условиях с сохранением природной структуры и влажности. Соответствие полученных таким образом характеристик состояния грунта, залегающего в основании сооружения, является одним из важнейших условий точности инженерных прогнозов.

Рассмотрим лишь те характеристики грунтов, которые определяют их физические свойства. Физическое состояние грунтов определяется в основном тремя характеристиками: плотностью грунта , плотностью минеральных частиц и влажностью грунта . Остальные характеристики являются расчетными с использованием этих трёх.

Представим себе некоторый единичный объём грунта V , состоящий из твёрдого, жидкого и газообразного компонентов, каждый из которых имеет соответствующие объём и массу (рис. 1.5).

Плотность грунта – отношение массы грунта к его объёму, имеет размерность г/см 3 , т/м 3:


. (1.1)

Плотность грунта зависит от его минералогического состава, пористости и влажности и меняется в пределах 1,5 ÷ 2,4 г/см 3 . Она определяется методом режущего кольца с известным объёмом или парафинирования образца произвольной формы. Плотность является важной характеристикой грунта и используется при расчётах несущей способности основания, природного давления грунта, давления грунта на подпорные стенки, устойчивости оползневых склонов и откосов.

Плотность частиц грунта – отношение массы твёрдых частиц к их объёму

= , (1.2)

зависит только от их минералогического состава. Для грунтов она меняется от 2,4 до 3,2 г/см 3 , в том числе для песков – от 2,55 до 2,66 г/см 3 , для супесей – от 2,66 до 2,68 г/см 3 , для суглинков – от 2,68 до 2,72 г/см 3 , для глин – от 2,71 до 2,76 г/см 3 . Плотность частиц определяется при помощи пикнометра.

Влажность грунта – отношение массы воды к массе твёрдых частиц, выражается в процентах или в долях единицы


W = (1.3)

и определяется высушиванием образца грунта в термостате при температуре 105 ºC до достижения стабильной массы высушенного грунта. Природная влажность грунтов меняется в широких пределах от единиц до сотен процентов. Высокие значения влажности свойственны малоуплотненным водонасыщенным глинистым грунтам, низкие – маловлажным крупнообломочным, песчаным и лессовым грунтам.

Приведенные выше основные физические характеристики грунта , , всегда определяются экспериментально. Они используются для расчета других, указанных ниже, характеристик.

Плотность сухого грунта или плотность скелета грунта определяется как отношение массы частиц грунта ко всему объёму грунта:

Используя выражения (1.1) и (1.3), можно записать

Песок I P < 1

Супесь 1≤ I P < 7

Суглинок 7 ≤ I P < 17

Глина I P ≥ 17

Определяем тип исследуемого грунта.

Е. Показателем текучести глинистого грунта I L называют числовую характеристику, показывающую в каком состоянии находится грунт в условиях естественного залегания.

Ранее определены:

Природная влажность грунта W tot [%]

Влажность на границе текучести W L [%]

Влажность на границе раскатывания W P [%]

I L = (W - W P) /(W L – W P)

Состояние пылевато-глинистого грунта по консистенции определяется следующим образом:

Супеси твердые I L ≤ 0

– пластичные 0 < I L < 1

– текучие I L ≥ 1

Суглинки и глины твердые I L ≤ 0

– полутвердые 0 < I L ≤ 0,25

– тугопластичные 0,25 < I L ≤ 0,5 – мягкопластичные 0,5 < I L ≤ 0,75

– текучие 0,75 < I L

Определяем состояние исследуемого грунта.

З. Назначение расчетного сопротивления грунта R o .

Ранее определены:

Тип грунта по пластичности I P [дол.ед.]

Коэффициент пористости e [дол.ед.]

Показатель консистенции I L [дол.ед.]

Для пылевато-глинистых грунтов расчетное сопротивление грунта определяется по таблице.

ЛАБОРАТОРНАЯ РАБОТА № 7

ОПРЕДЕЛЕНИЕ УГЛА ЕСТЕСТВЕННОГО ОТКОСА

ПЕСЧАНОГО ГРУНТА

Углом естественного откоса α называют максимальный угол, при котором неукрепленный откос песчаного грунта сохраняет равновесие.

Угол естественного откоса песчаного грунта определяется в воздушно-сухом и подводном состояниях. Величина угла естественного откоса используется в расчетах объемов земляных работ, а самое главное, в расчетах прочности и устойчивости грунтов, давления их на ограждения и пр. Кроме того, угол естественного откоса может служить признаком наличия у песчаных грунтов, содержащих свободные коллоиды, плывунных свойств (угол естественного откоса в подводном состоянии у таких грунтов колеблется от 0 о до 12-14 о).

Принадлежности:

1. Прибор для определения углов естественного откоса (рис.) дисковый прибор

2. Прибор Д.И.Знаменского УВТ-3М

3. Масштабная линейка.

4. Уровень.

Порядок выполнения работы:

Образец воздушно-сухого песка объемом, примерно, 1 кг. Просеивают сквозь сито с диаметром отверстий 5 мм. И тщательно перемешивают. Кроме прибора Д.И. Знаменского, определения угла естественного откоса можно выполнить с помощью диска, имеющего вертикальный тарированный стержень. На такой диск сверху одевается приспособление сверху отверстием, засыпается песком, а затем очень плавно снимаем это приспособление. Излишек песка осыпается, а в диске остается конус из песка. Вершина которого в месте соприкосновения со стрежнем показывает значение угла откоса.

Измеряют высоту h и основание l откоса с точностью до 1 мм. Угол естественного откоса вычисляют (с точностью до 30 мин.) по формуле:


tg α = ; α = arc tg

Для каждого образа песчаного грунта в воздушно-сухом состоянии производят не менее трех определений угла естественного откоса. Расхождение между повторными определениями больше чем на 2˚ не допускается. За угол естественного откоса песчаного грунта в воздушно-сухом состоянии принимают среднее арифметического значение результатов отдельных определений, выраженное в целых градусах.

Последовательность записи результатов определения:

1. Наименование вида песчаного грунта

2. Определение угла естественного откоса

Приложение 1 лаб.работе №1

Твердость минералов

Классификация магматических горных пород по SiO 2

Состав пород

Породы

содержание диоксида SiO 2 (%) минералы глубинные излившиеся (аналоги глубинных)
Кислые породы (75-65) Кварц, полевые шпаты (чаще ортоклаз), слюды Граниты Кварцевый порфир, липарит

Средние породы (65-52)

Полевые шпаты (чаще ортоклаз, роговая обманка, биотит) Сиениты Ортоклазовый порфир, трахит
Плагиоклазы, роговая обманка, биотит Диориты Порфирит, андезит
Основные породы (52-40) Плагиоклазы (чаще лабрадор), авгит, иногда оливин Габбро Диабаз, базальт

Ультраосновные породы (менее 40)

Авгит Пироксениты -
Авгит, оливин, рудные минералы Перидотиты -
Оливин, рудные минералы Дуниты -

Приложение 2 лаб.работе №1

Пылевато-глинистые грунты в зависимости от количества содержащейся в них воды могут иметь консистенцию (густоту теста) от твердой до текучей. Для определения консистенции находят характерные влажности пылевато-глинистых грунтов, которые называются границей раскатывания и границей текучести .

Границей раскатывания называется влажность грунта, при которой он теряет способность раскатываться в шнур диаметром 2..3 мм.

Границей текучести называется влажность грунта, при которой стандартный конус погружается в образец на глубину 10 мм.

Рис. 1.4. Определение границы раскатывания грунтов

Числом пластичности грунта называется разность между границей текучести и границей раскатывания:

(1.18)

Консистенция пылевато-глинистого грунта оценивается по показателю текучести :

(1.19)

Таблица 1.5. Состояние глин и суглинков

Для супесей вследствие малой точности определения значений и различают только три состояния: твердое, пластичное и текучее.

Таблица 1.6. Состояние супесей

В группе пылевато-глинистых грунтов выделяются лессовые грунты и илы - обладают специфическими неблагоприятными свойствами.

Лессовые грунты содержат более 50% пылеватых частиц с наличием солей, в основном карбоната кальция, обладают преимущественно макропористой структурой и относятся к категории структурно-неустойчивых просадочных грунтов. Просадкой называется быстро развивающаяся осадка, вызванная резким изменением структуры грунта. Значительные осадки при нарушении структуры просадочных грунтов обусловлены тем, что в природных условиях они бывают недоуплотненными. В процессе их образования не происходит полного уплотнения от действия собственного веса вследствие образования новых структурных связей. Такие грунты становятся макропористыми и при некоторых внешних воздействиях (замачивание, вибрация), разрушающих возникшие связи, могут доуплотняться, что вызывает их значительные осадки. Возможность проявления просадочных свойств грунтов предварительно оценивается степенью их влажности и показателем просадочности , который определяется по формуле:

где: е - коэффициент пористости природного грунта; - коэффициент пористости, соответствующий влажности на границе текучести (1.16).