На какой высоте начинаются плотные слои атмосферы. Атмосфера — воздушная оболочка Земли

Иногда атмосферу, толстым слоем окружающую нашу планету, называют пятым океаном. Недаром второе название самолета - воздушное судно. Атмосфера представляет собой смесь различных газов, среди которых преобладают азот и кислород. Именно благодаря последнему на планете возможна жизнь в той форме, к которой мы все привыкли. Кроме них, есть еще 1% других составляющих. Это инертные (не вступающие в химические взаимодействия) газы, оксид серы, Также в пятом океане содержатся механические примеси: пыль, пепел и пр. Все слои атмосферы в общей сложности простираются почти на 480 км от поверхности (данные различны, подробнее на этом моменте остановимся далее). Такая впечатляющая толщина образует своеобразный непробиваемый щит, защищающий планету от губительного космического излучения и крупных объектов.

Различают следующие слои атмосферы: тропосфера, за ней следует стратосфера, далее мезосфера и, наконец, термосфера. Приведенный порядок начинается у поверхности планеты. Плотные слои атмосферы представлены первыми двумя. Именно они отфильтровывают значительную часть губительного

Самый нижний слой атмосферы - тропосфера, простирается всего на 12 км над уровнем моря (18 км в тропиках). Здесь концентрируется до 90% водяного пара, поэтому облака формируются в нем. Большая часть воздуха также сосредоточена именно здесь. Все последующие слои атмосферы более холодные, так как близость к поверхности позволяет отраженным солнечным лучам нагревать воздух.

Стратосфера простирается почти до 50 км от поверхности. Большинство метеозондов «плавают» в этом слое. Также здесь могут летать некоторые виды самолетов. Одной из удивительных особенностей является температурный режим: в промежутке от 25 до 40 км начинается рост температуры воздуха. От -60 она поднимается почти до 1. Затем наблюдается небольшое снижение до нуля, которое сохраняется до высоты в 55 км. Верхняя граница - это печально известный

Далее почти до 90 км простирается мезосфера. Температура воздуха здесь резко падает. На каждые 100 метров подъема наблюдается снижение на 0,3 градуса. Иногда ее называют наиболее холодным участком атмосферы. Плотность воздуха низкая, однако ее вполне достаточно для создания сопротивления падающим метеорам.

Слои атмосферы в привычном понимании заканчиваются на высоте около 118 км. Здесь формируются знаменитые полярные сияния. Выше начинается область термосферы. Из-за рентгеновских и происходит ионизация тех немногих молекул воздуха, содержащихся в этой области. Данные процессы создают так называемую ионосферу (она часто включается в термосферу, поэтому отдельно не рассматривается).

Все, что находится выше 700 км, называется экзосферой. воздуха крайне незначительна, поэтому они свободно перемещаются, не испытывая сопротивления из-за соударений. Это позволяет отдельным из них накапливать энергию, соответствующую 160 градусам Цельсия, при том, что окружающая температура низка. Молекулы газов распределяются по объему экзосферы в соответствии со своей массой, поэтому наиболее тяжелые из них могут быть обнаружены только в нижней части слоя. Уменьшающееся с высотой притяжение планеты уже не в состоянии удерживать молекулы, поэтому космические высокоэнергетические частицы и излучение сообщают молекулам газов импульс, достаточный для того, чтобы покинуть атмосферу. Эта область является одной из наиболее продолжительных: считается, что атмосфера полностью переходит в космический вакуум на высотах, больших 2000 км (иногда даже фигурирует число 10000). Искусственные вращаются по орбитах еще в термосфере.

Все указанные числа являются ориентировочными, так как границы атмосферных слоев зависят от ряда факторов, например, от активности Солнца.

Атмосфера – это воздушная оболочка Земли. Простирающаяся вверх на 3000 км от земной поверхности. Ее следы прослеживаются до высоты до 10 000 км. А. имеет неравномерную плотности 50 5 ее массы сосредоточены до 5 км, 75 % – до 10 км, 90 % до 16 км.

Атмосфера состоит из воздуха – механической смеси нескольких газов.

Азот (78 %) в атмосфере играет роль разбавителя кислорода, регулируя темп окисления, а, следовательно, скорость и напряженность биологических процессов. Азот – главный элемент земной атмосферы, который непрерывно обменивается с живым веществом биосферы, причем составными частями последнего служат соединения азота (аминокислоты, пурины и др.). Извлечение азота из атмосферы происходит неорганическим и биохимическим путями, хотя они тесно взаимосвязаны. Неорганическое извлечение связано с образованием его соединений N 2 O, N 2 O 5 , NO 2 , NH 3 . Они находятся в атмосферных осадках и образуются в атмосфере под действием электрических разрядов во время гроз или фотохимических реакций под влиянием солнечной радиации.

Биологическое связывание азота осуществляется некоторыми бактериями в симбиозе с высшими растениями в почвах. Азот также фиксируется некоторыми микроорганизмами планктона и водорослями в морской среде. В количественном отношении биологическое связывание азота превышает его неорганическую фиксацию. Обмен всего азота атмосферы происходит примерно в течение 10 млн. лет. Азот содержится в газах вулканического происхождения и в изверженных горных породах. При нагревании различных образцов кристаллических пород и метеоритов азот освобождается в виде молекул N 2 и NH 3 . Однако главной формой присутствия азота, как на Земле, так и на планетах земной группы, является молекулярная. Аммиак, попадая в верхние слои атмосферы, быстро окисляется, высвобождая азот. В осадочных горных породах он захороняется совместно с органическим веществом и находится в повышенном количестве в битуминозных отложениях. В процессе регионального метаморфизма этих пород азот в различной форме выделяется в атмосферу Земли.

Геохимический круговорот азота (

Кислород (21 %) используется живыми организмами для дыхания, входит в состав органического вещества (белки, жиры, углеводы). Озон О 3 . задерживает губительную для жизни ультрафиолетовую радиацию Солнца.

Кислород – второй по распространению газ атмосферы, играющий исключительно важную роль во многих процессах биосферы. Господствующей формой его существования является О 2 . В верхних слоях атмосферы под влиянием ультрафиолетовой радиации происходит диссоциация молекул кислорода, а на высоте примерно 200 км отношение атомарного кислорода к молекулярному (О: О 2) становится равным 10. При взаимодействии этих форм кислорода в атмосфере (на высоте 20- 30 км) возникает озоновый пояс (озоновый экран). Озон (О 3) необходим живым организмам, задерживая губительную для них большую часть ультрафиолетовой радиации Солнца.

На ранних этапах развития Земли свободный кислород возникал в очень малых количествах в результате фотодиссоциации молекул углекислого газа и воды в верхних слоях атмосферы. Однако эти малые количества быстро расходовались на окисление других газов. С появлением в океане автотрофных фотосинтезирующих организмов положение существенно изменилось. Количество свободного кислорода в атмосфере стало прогрессивно возрастать, активно окисляя многие компоненты биосферы. Так, первые порции свободного кислорода способствовали прежде всего переходу закисных форм железа в окисные, а сульфидов в сульфаты.

В конце концов количество свободного кислорода в атмосфере Земли достигло определенной массы и оказалось сбалансированным таким образом, что количество производимого стало равно количеству поглощаемого. В атмосфере установилось относительное постоянство содержания свободного кислорода.

Геохимический круговорот кислорода (В.А. Вронский, Г.В. Войткевич)

Углекислый газ , идет на образование живого вещества, а вместе с водяным паром создает так называемый «оранжерейный (парниковый) эффект».

Углерод (углекислота) – его большая часть в атмосфере находится в виде СО 2 и значительно меньшая в форме СН 4 . Значение геохимической истории углерода в биосфере исключительно велико, поскольку он входит в состав всех живых организмов. В пределах живых организмов преобладают восстановленные формы нахождения углерода, а в окружающей среде биосферы – окисленные. Таким образом, устанавливается химический обмен жизненного цикла: СО 2 ↔ живое вещество.

Источником первичной углекислоты в биосфере является вулканическая деятельность, связанная с вековой дегазацией мантии и нижних горизонтов земной коры. Часть этой углекислоты возникает при термическом разложении древних известняков в различных зонах метаморфизма. Миграция СО 2 в биосфере протекает двумя способами.

Первый способ выражается в поглощении СО 2 в процессе фотосинтеза с образованием органических веществ и в последующем захоронении в благоприятных восстановительных условиях в литосфере в виде торфа, угля, нефти, горючих сланцев. По второму способу миграция углерода приводит к созданию карбонатной системы в гидросфере, где СО 2 переходит в Н 2 СО 3 , НСО 3 -1 , СО 3 -2 . Затем с участием кальция (реже магния и железа) происходит осаждение карбонатов биогенным и абиогенным путем. Возникают мощные толщи известняков и доломитов. По оценке А.Б. Ронова, соотношение органического углерода (С орг) к углероду карбонатному (С карб) в истории биосферы составляло 1:4.

Наряду с глобальным круговоротом углерода существует еще ряд его малых круговоротов. Так, на суше зеленые растения поглощают СО 2 для процесса фотосинтеза в дневное время, а в ночное – выделяют его в атмосферу. С гибелью живых организмов на земной поверхности происходит окисление органических веществ (с участием микроорганизмов) с выделением СО 2 в атмосферу. В последние десятилетия особое место в круговороте углерода занимает массовое сжигание ископаемого топлива и возрастание его содержания в современной атмосфере.

Круговорот углерода в географической оболочке (по Ф. Рамаду, 1981)

Аргон – третий по распространению атмосферный газ, что резко отличает его от крайне скудно распространенных других инертных газов. Однако аргон в своей геологической истории разделяет судьбу этих газов, для которых характерны две особенности:

  1. необратимость их накопления в атмосфере;
  2. тесная связь с радиоактивным распадом определенных неустойчивых изотопов.

Инертные газы находятся вне круговорота большинства циклических элементов в биосфере Земли.

Все инертные газы можно подразделить на первичные и радиогенные. К первичным относятся те, которые были захвачены Землей в период ее образования. Они распространены крайне редко. Первичная часть аргона представлена преимущественно изотопами 36 Аr и 38 Аr, в то время как атмосферный аргон состоит полностью из изотопа 40 Аr (99,6%), который, несомненно, является радиогенным. В калийсодержащих породах происходило и происходит накопление радиогенного аргона за счет распада калия-40 путем электронного захвата: 40 К + е → 40 Аr.

Поэтому содержание аргона в горных породах определяется их возрастом и количеством калия. В такой мере концентрация гелия в породах служит функцией их возраста и содержания тория и урана. Аргон и гелий выделяются в атмосферу из земных недр во время вулканических извержений, по трещинам в земной коре в виде газовых струй, а также при выветривании горных пород. Согласно расчетам, выполненным П. Даймоном и Дж. Калпом, гелий и аргон в современную эпоху накапливаются в земной коре и в сравнительно малых количествах поступают в атмосферу. Скорость поступления этих радиогенных газов настолько мала, что не могла в течение геологической истории Земли обеспечить наблюдаемое содержание их в современной атмосфере. Поэтому остается предположить, что большая часть аргона атмосферы поступила из недр Земли на самых ранних этапах ее развития и значительно меньшая добавилась впоследствии в процессе вулканизма и при выветривании калийсодержащих горных пород.

Таким образом, в течение геологического времени у гелия и аргона были разные процессы миграции. Гелия в атмосфере весьма мало (около 5*10 -4 %), причем «гелиевое дыхание» Земли было более облегченным, так как он, как самый легкий газ, улетучивался в космическое пространство. А «аргоновое дыхание» – тяжелым и аргон оставался в пределах нашей планеты. Большая часть первичных инертных газов, как неон и ксенон, была связана с первичным неоном, захваченным Землей в период ее образования, а также с выделением при дегазации мантии в атмосферу. Вся совокупность данных по геохимии благородных газов свидетельствует о том, что первичная атмосфера Земли возникла на самых ранних стадиях своего развития.

В атмосфере содержится и водяной пар и вода в жидком и твердом состоянии. Вода в атмосфере является важным аккумулятором тепла.

В нижних слоях атмосферы содержится большое количество минеральной и техногенной пыли и аэрозолей, продуктов горения, солей, спор и пыльцы растений и т.д.

До высоты 100- 120 км, вследствие полного перемешивания воздуха состав атмосферы однороден. Соотношение между азотом и кислородом постоянно. Выше преобладают инертные газы, водород и др. В нижних слоях атмосферы находится водяной пар. С удалением от земли содержание его падает. Выше соотношение газов изменяется, например на высоте 200- 800 км, кислород преобладает над азотом в 10-100 раз.

Атмосфера Земли неоднородна: на разных высотах наблюдаются различная плотность воздуха и давление, меняется температура и газовый состав. На основании поведения температуры окружающего воздуха (т.е. растет температура с высотой или понижается) в ней выделяются следующие слои: тропосфера, стратосфера, мезосфера, термосфера и экзосфера. Границы между слоями называются паузами: их насчитывается 4, т.к. верхняя граница экзосферы очень размыта и часто относится к ближнему космосу. С общим строением атмосферы можно ознакомиться на прилагающейся схеме.

Рис.1 Строение атмосферы Земли. Credit: сайт

Самый нижний атмосферный слой - тропосфера, верхняя граница которой, называемая тропопаузой, в зависимости от географической широты различается и составляет от 8 км. в полярных до 20 км. в тропических широтах. В средних или умеренных широтах её верхняя граница лежит на высотах 10-12 км.. В течении года верхняя граница тропосферы испытывает колебания, зависящие от поступления солнечной радиации. Так в результате зондирования у Южного полюса Земли метеорологической службой США было выявлено, что, с марта до августа или сентября происходит неуклонное охлаждение тропосферы, в результате которого на короткий период в августе или сентябре её граница поднимается до 11,5 км. Затем, в период с с сентября по декабрь она быстро понижается и достигает своего самого низкого положения - 7,5 км, после которого её высота практически не изменяется до марта. Т.е. наибольшей своей толщины тропосфера достигает летом, а наименьшей зимой.

Стоит отметить, что кроме сезонных существуют и суточные колебания высоты тропопаузы. Также на её положение оказывают влияние циклоны и антициклоны: в первых она опускается, т.к. давление в них ниже чем в окружающем воздухе, во вторых соответственно поднимается.

Тропосфера содержит до 90% всей массы земного воздуха и 9/10 всего водяного пара. Здесь сильно развита турбулентность, особенно в приповерхностных и наиболее высоких слоях, развиваются облака всех ярусов, формируются циклоны и антициклоны. А благодаря накоплению парниковыми газами (углекислый газ, метан, водяной пар) отражённых от поверхности Земли солнечных лучей развивается парниковый эффект.

С парниковым эффектом связано понижение температуры воздуха в тропосфере с высотой (т.к. нагретая Земля больше тепла отдаёт приземным слоям). Средний вертикальный градиент составляет 0,65°/100 м (т.е. температура воздуха понижается на 0,65° C при подъёме на каждые 100 метров). Так если у поверхности Земли в районе экватора среднегодовая температура воздуха составляет +26° то на верхней границе -70°. Температура в районе тропопаузы над северным полюсом в течении года изменяется от -45° летом до -65° зимой.

С ростом высоты падает и давление воздуха, составляя у верхней границы тропосферы лишь 12-20% от приповерхностного.

На границе тропосферы и вышележащего слоя стратосферы лежит слой тропопаузы, толщиной 1-2 км. В качестве нижних границ тропопаузы обычно принимается слой воздуха в котором вертикальный градиент снижается до 0,2°/100 м против 0,65°/100 м в нижележащих районах тропосферы.

В пределах тропопаузы наблюдаются воздушные потоки строго определённого направления, называемые высотные струйные течения либо "реактивные потоки" (jet streams), образующиеся под влиянием вращения Земли вокруг своей оси и нагрева атмосферы при участии солнечной радиации. Наблюдаются течения на границах зон со значительными перепадами температур. Выделяют несколько очагов локализации этих течений, например, арктический, субтропический, субполярный и прочие. Знание локализации jet streams очень важно для метеорологии и авиации: первая использует потоки для более точного прогнозирования погоды, вторая для построения маршрутов полетов самолетов, т.к. на границах потоков существуют сильные турбулентные вихри, подобные небольшим водоворотам, называемые из-за отсутствия на этих высотах облачности "турбулентностью ясного неба".

Под влиянием высотных струйных течений в тропопаузе часто образуются разрывы, а временами она вообще исчезает, правда затем образуется заново. Особенно часто это наблюдается в субтропических широтах над которыми господствует мощное субтропическое высотное течение. Кроме того к формированию разрывов приводит различие слоёв тропопаузы по температуре окружающего воздуха. Например, обширный разрыв существует между тёплой и низкой полярной тропопаузой и высокой и холодной тропопаузой тропических широт. В последнее время выделяется и слой тропопаузы умеренных широт, который имеет разрывы с предыдущими двумя слоями: полярным и тропическим.

Вторым слоем земной атмосферы является стратосфера. Стратосферу условно можно разделить на 2 области. Первая из них, лежащая до высот 25 км характеризуется почти постоянными температурами, которые равны температурам верхних слоев тропосферы над конкретной местностью. Вторая область или область инверсии, характеризуется повышением температуры воздуха до высот примерно 40 км. Это происходит за счёт поглощения кислородом и озоном солнечного ультрафиолетового излучения. В верхней части стратосферы благодаря этому прогреву температура часто является положительной или даже сопоставима с температурой приземного воздуха.

Выше области инверсии находится слой постоянных температур, который носит название стратопаузы и является границей между стратосферой и мезосферой. Её толщина достигает 15 км.

В отличии от тропосферы в стратосфере редки турбулентные возмущения, но зато отмечены сильные горизонтальные ветры или струйные течения, дующие в узких зонах вдоль границ умеренных широт, обращённых к полюсам. Положение этих зон непостоянно: они могут смещаться, расширяться или даже вовсе исчезать. Часто струйные течения проникают в верхние слои тропосферы, или же наоборот массы воздуха из тропосферы проникают в нижние слои стратосферы. Особенно характерно подобное перемешивание масс воздуха в районах атмосферных фронтов.

Мало в стратосфере и водяного пара. Воздух здесь очень сух, а потому и облаков образуется мало. Лишь на высотах 20-25 км находясь в высоких широтах можно заметить очень тонкие перламутровые облака, состоящие из переохлажденных водяных капелек. Днём эти облака не видны, зато с наступлением темноты они кажутся светящимися из-за освещения их уже севшим за горизонт Солнцем.

На этих же высотах (20-25 км.) в нижней стратосфере существует так называемый озоновый слой - область с наибольшим содержанием озона, который образуется под воздействием ультрафиолетового солнечного излучения (более подробно об этом процессе вы можете узнать на странице ). Озоновый слой или озоносфера имеет чрезвычайную важность для поддержания жизни всех организмов живущих на суше, поглощая смертельно опасные ультрафиолетовые лучи с длиной волны до 290 нм. Именно по этой причине выше озонового слоя живые организмы не живут, он является верхней границей распространения жизни на Земле.

Под воздействием озона также изменяются магнитные поля, атомы распадаются молекулы, происходит ионизация, новообразование газов и других химических соединений.

Слой атмосферы лежащий выше стратосферы называется мезосферой. Для него характерно понижение температуры воздуха с высотой со средним вертикальным градиентом 0,25-0,3°/100 м, что приводит к сильной турбулентности. У верхних границ мезосферы в области называемой мезопаузой были отмечены температуры до -138°С, что является абсолютным минимумом для всей атмосферы Земли в целом.

Здесь же в пределах мезопаузы проходит нижняя граница области активного поглощения рентгеновского и коротковолнового ультрафиолетового излучения Солнца. Подобный энергетический процесс получил название лучистый теплообмен. В результате происходит нагревание и ионизация газа, что обусловливает свечение атмосферы.

На высотах 75-90 км у верхних границ мезосферы были отмечены особые облака, занимающие в полярных регионах планеты обширные площади. Называют эти облака серебристыми из-за их свечения в сумерках, которое обусловлено отражением солнечных лучей от ледяных кристаллов, из которых эти облака состоят.

Давление воздуха в пределах мезопаузы в 200 раз меньше чем у земной поверхности. Это говорит о том, что практически весь воздух атмосферы сосредоточен в её 3 нижних слоях: тропосфере, стратосфере и мезосфере. На вышележащие слои термосферу и экзосферу приходится лишь 0,05% массы всей атмосферы.

Термосфера лежит на высотах от 90 до 800 км над поверхностью Земли.

Для термосферы характерен непрерывный рост температуры воздуха до высот 200-300 км, где она может достигать 2500°C. Рост температуры происходит за счёт поглощения молекулами газа рентгеновского и коротковолновой части ультрафиолетового излучения Солнца. Выше 300 км над уровнем моря рост температуры прекращается.

Одновременно с ростом температуры снижается давление, и, следовательно, плотность окружающего воздуха. Так если у нижних границ термосферы плотность составляет 1,8×10 -8 г/см 3 , то у верхних уже 1,8×10 -15 г/см 3 , что примерно соответствует 10 млн. - 1 млрд. частиц в 1 см 3 .

Все характеристики термосферы, такие как состав воздуха, его температура, плотность, подвержены сильным колебаниям: в зависимости от географического положения, сезона года и времени суток. Меняется даже расположение верхней границы термосферы.

Самый верхний слой атмосферы называется экзосферой или слоем рассеяния. Его нижняя граница постоянно меняется в очень широких пределах; за среднюю же величину принята высота 690-800 км. Устанавливается она там, где вероятностью межмолекулярных или межатомных столкновений можно пренебречь, т.е. среднее расстояние, которое преодолеет хаотически движущаяся молекула до столкновения с другой такой же молекулой (т.н. свободный пробег) будет настолько велико, что фактически молекулы с вероятностью близкой к нулю не столкнуться. Слой где имеет место сказываться описанное явление называется термопаузой.

Верхняя граница экзосферы лежит на высотах 2-3 тыс.км. Она сильно размыта и постепенно переходит в ближнекосмический вакуум. Иногда, по этой причине, экзосферу считают частью космического пространства, а за её верхнюю границу принимают высоту 190 тыс.км, на которой влияние давления солнечного излучения на скорости атомов водорода превышает гравитационное притяжение Земли. Это т.н. земная корона, состоящая из атомов водорода. Плотность земной короны очень мала: всего 1000 частиц в кубическом сантиметре, но и это число более чем в 10 раз превышает концентрацию частиц в межпланетном пространстве.

В связи в чрезвычайной разреженностью воздуха экзосферы частицы движутся вокруг Земли по эллиптическим орбитам, не сталкиваясь между собою. Некоторые же из них, двигаясь по разомкнутым или гиперболическим траекториям с космическими скоростями (атомы водорода и гелия) покидают пределы атмосферы и уходят в космическое пространство, по причине чего экзосферу называют сферой рассеяния.

Атмосфера простирается вверх на много сотен километров. Верхняя ее граница, на высоте около 2000-3000 км, в известной мере условна, так как газы, ее составляющие, постепенно разрежаясь, переходят в мировое пространство. С высотой меняются химический состав атмосферы, давление, плотность, температура и другие ее физические свойства. Как говорилось ранее, химический состав воздуха до высоты 100 км существенно не меняется. Несколько выше атмосфера также состоит главным образом из азота и кислорода. Но на высотах 100-110 км, под действием ультрафиолетовой радиации солнца, молекулы кислорода расщепляются на атомы и появляется атомарный кислород. Выше 110-120км кислород почти весь становится атомарным. Предполагается, что выше 400-500 км газы, составляющие атмосферу, также находятся в атомарном состоянии.

Давление и плотность воздуха с высотой быстро уменьшаются. Хотя атмосфера простирается вверх на сотни километров, основная масса ее размещается в довольно тонком слое, прилегающем к поверхности земли в самых нижних ее частях. Так, в слое между уровнем моря и высотами 5-6 км сосредоточена половина массы атмосферы, в слое 0-16 км -90%, а в слое 0-30 км - 99%. Такое же быстрое уменьшение массы воздуха происходит выше 30 км. Если вес 1 м 3 воздуха у поверхности земли равен 1033 г, то на высоте 20 км он равен 43 г, а на высоте 40 км лишь 4 г.

На высоте 300-400 км и выше воздух настолько разрежен, что в течение суток плотность его изменяется во много раз. Исследования показали, что это изменение плотности связано с положением Солнца. Наибольшая плотность воздуха около полудня, наименьшая - ночью. Объясняется это отчасти тем, что верхние слои атмосферы реагируют на изменение электромагнитного излучения Солнца.

Изменение температуры воздуха с высотой происходит также неодинаково. По характеру изменения температуры с высотой атмосфера делится на несколько сфер, между которыми располагаются переходные слои, так называемые паузы, где температура с высотой мало изменяется.

Здесь приведены наименования и главные характеристики сфер и переходных слоев.

Приведем основные данные о физических свойствах этих сфер.

Тропосфера. Физические свойства тропосферы в значительной степени определяются влиянием земной поверхности, которая является ее нижней границей. Наибольшая высота тропосферы наблюдается в экваториальной и тропической зонах. Здесь она достигает 16-18 км и сравнительно мало подвергается суточным и сезонным изменениям. Над приполюсными и смежными областями верхняя граница тропосферы лежит в среднем на уровне 8- 10 км. В средних широтах она колеблется от 6-8 до 14-16 км.

Вертикальная мощность тропосферы значительно зависит от характера атмосферных процессов. Нередко в течение суток верхняя граница тропосферы над данным пунктом или районом опускается или поднимается на несколько километров. Это связано главным образом с изменениями температуры воздуха.

В тропосфере сосредоточено более 4 / 5 массы земной атмосферы и почти весь содержащийся в ней водяной пар. Кроме того, от поверхности земли до верхней границы тропосферы температура понижается в среднем на 0,6° на каждые 100 м, или 6° на 1 км поднятия. Это объясняется тем, что воздух в тропосфере нагревается и охлаждается преимущественно от поверхности земли.

В соответствии с притоком солнечной энергии температура понижается от экватора к полюсам. Так, средняя температура воздуха у поверхности земли на экваторе достигает +26°, над полярными областями зимой -34°, -36°, а летом около 0°. Таким образом, разность температур экватор - полюс зимой составляет 60°, а летом лишь 26°. Правда, такие низкие температуры в Арктике зимой наблюдаются только вблизи поверхности земли вследствие охлаждения воздуха над ледяными просторами.

Зимой в Центральной Антарктиде температура воздуха на поверхности ледяного щита еще ниже. На станции Восток в августе 1960 г. зарегистрирована самая низкая температура на земном шаре -88,3°, а наиболее часто в Центральной Антарктиде она бывает равна -45°, -50°.

С высоты разность температур экватор - полюс уменьшается. Например на высоте 5 км на экваторе температура достигает - 2°, -4°, а на этой же высоте в Центральной Арктике -37°, -39° зимой и -19°, -20° летом; следовательно, разность температуры зимой равна 35-36°, а летом 16-17°. В южном полушарии эти разности несколько больше.

Энергию атмосферной циркуляции можно определить контрактами температуры экватор-полюс. Так как зимой величина контрастов температуры больше, то атмосферные процессы протекают более интенсивно, чем летом. Этим же объясняется тот факт, что преобладающие западные ветры зимой в тропосфере имеют большие скорости, чем летом. При этом скорость ветра, как правило, с высотой возрастает, доходя до максимума на верхней границе тропосферы. Горизонтальный перенос сопровождается вертикальными перемещениями воздуха и турбулентным (неупорядоченным) движением. Вследствие подъема и опускания больших объемов воздуха образуются и рассеиваются облака, возникают и прекращаются осадки. Переходным слоем между тропосферой и вышележащей сферой является тропопауза. Выше нее лежит стратосфера.

Стратосфера простирается от высот 8-17 до 50-55 км. Она была открыта в начале нашего века. По физическим свойствам стратосфера резко отличается от тропосферы уже тем, что температура воздуха здесь, как правило, повышается в среднем на 1 - 2° на километр поднятия и на верхней границе, на высоте 50-55 км, становится даже положительной. Повышение температуры в этой сфере вызвано наличием здесь озона (О 3), который образуется под влиянием ультрафиолетовой радиации Солнца. Слой озона занимает почти всю стратосферу. Стратосфера очень бедна водяным паром. Здесь не происходит бурных процессов облакообразования и не выпадают осадки.

Еще совсем недавно предполагали, что стратосфера является сравнительно спокойной средой, где не происходит перемешивания воздуха, как в тропосфере. Поэтому считали, что газы в стратосфере разделены по слоям, в соответствии со своими удельными весами. Отсюда и название стратосферы («стратус» - слоистый). Полагали также, что температура в стратосфере формируется под действием лучистого равновесия, т. е. при равенстве поглощенной и отраженной солнечной радиации.

Новые данные, полученные с помощью радиозондов и метеорологических ракет, показали, что в стратосфере, как и в верхней тропосфере, осуществляется интенсивная циркуляция воздуха с большими изменениями температуры и ветра. Здесь, как и в тропосфере, воздух испытывает значительные вертикальные перемещения, турбулентные движения при сильных горизонтальных воздушных течениях. Все это - результат неоднородного распределения температуры.

Переходным слоем между стратосферой и вышележащей сферой является стратопауза. Однако, прежде чем перейти к характеристике более высоких слоев атмосферы, ознакомимся с так называемой озоносферой, границы которой приблизительно соответствуют границам стратосферы.

Озон в атмосфере. Озон играет большую роль в создании режима температуры и воздушных течений в стратосфере. Озон (О 3) ощущается нами после грозы при вдыхании чистого воздуха с приятным привкусом. Однако здесь речь пойдет не об этом озоне, образующемся после грозы, а об озоне, содержащемся в слое 10-60 км с максимумом на высоте 22-25 км. Озон образуется под действием ультрафиолетовых лучей Солнца и, хотя общее количество его незначительно, играет важную роль в атмосфере. Озон обладает способностью поглощать ультрафиолетовую радиацию Солнца и тем самым предохраняет животный и растительный мир от ее губительного действия. Даже та ничтожная доля ультрафиолетовых лучей, которая достигает поверхности земли, сильно обжигает тело, когда человек чрезмерно увлекается приемом солнечных ванн.

Количество озона неодинаково над различными частями Земли. Озона больше в высоких широтах, меньше в средних и низких широтах и изменяется это количество в зависимости от смены сезонов года. Весной озона больше, осенью меньше. Кроме того, происходят непериодические его колебания в зависимости от горизонтальной и вертикальной циркуляции атмосферы. Многие атмосферные процессы тесно связаны с содержанием озона, так как он оказывает непосредственное влияние на поле температуры.

Зимой, в условиях полярной ночи, в высоких широтах в слое озона происходит излучение и охлаждение воздуха. В результате в стратосфере высоких широт (в Арктике и Антарктике) зимой формируется область холода, стратосферный циклонический вихрь с большими горизонтальными градиентами температуры и давления, обусловливающий западные ветры над средними широтами земного шара.

Летом, в условиях полярного дня, в высоких широтах в слое озона происходит поглощение солнечного тепла и прогревание воздуха. В результате повышения температуры в стратосфере высоких широт формируется область тепла и стратосферный антициклонический вихрь. Поэтому над средними широтами земного шара выше 20 км летом в стратосфере преобладают восточные ветры.

Мезосфера. Наблюдениями с помощью метеорологических ракет и другими способами установлено, что общее повышение температуры, наблюдающееся в стратосфере, заканчивается на высотах 50-55 км. Выше этого слоя температура вновь понижается и у верхней границы мезосферы (около 80 км) достигает -75°, -90°. Далее вновь происходит повышение температуры с высотой.

Интересно отметить, что характерное для мезосферы понижение температуры с высотой происходит неодинаково на различных широтах и в течение года. В низких широтах падение температуры происходит более медленно, чем в высоких: средний для мезосферы вертикальный градиент температуры равен соответственно 0,23° - 0,31° на 100 м или 2,3°-3,1° на 1 км. Летом он значительно больше, чем зимой. Как показали новейшие исследования в высоких широтах, температура на верхней границе мезосферы летом на несколько десятков градусов ниже, чем зимой. В верхней мезосфере на высоте около 80 км в слое мезопаузы понижение температуры с высотой прекращается и начинается ее повышение. Здесь под инверсионным слоем в сумерки или перед восходом солнца при ясной погоде наблюдаются блестящие тонкие облака, освещенные солнцем, находящимся за горизонтом. На темном фоне неба они светятся серебристо-синим светом. Поэтому эти облака названы серебристыми.

Природа серебристых облаков еще недостаточно изучена. Долгое время полагали, что они состоят из вулканической пыли. Однако отсутствие оптических явлений, свойственных настоящим вулканическим облакам, привело к отказу от этой гипотезы. Затем было высказано предположение, что серебристые облака состоят из космической пыли. В последние годы предложена гипотеза, согласно которой эти облака состоят из ледяных кристаллов, подобно обычным перистым облакам. Уровень расположения серебристых облаков определяется задерживающим слоем в связи с инверсией температуры при переходе из мезосферы в термосферу на высоте около 80 км. Так как в подынверсионном слое температура достигает -80° и ниже, то здесь создаются наиболее благоприятные условия для конденсации водяного пара, который попадает сюда из стратосферы в результате вертикального движения или путем турбулентной диффузии. Серебристые облака обычно наблюдаются в летний период, иногда в очень большом количестве и в течение нескольких месяцев.

Наблюдениями за серебристыми облаками установлено, что летом на их уровне ветры обладают большой изменчивостью. Скорости ветра колеблются в больших пределах: от 50-100 до нескольких сотен километров в час.

Температура на высотах. Наглядное представление о характере распределения температуры с высотой, между поверхностью земли и высотами 90-100 км, зимой и летом в северном полушарии дает рисунок 5. Поверхности, разделяющие сферы, здесь изображены жирными штриховыми линиями. В самом низу хорошо выделяется тропосфера с характерным понижением температуры с высотой. Выше тропопаузы, в стратосфере, наоборот, температура с высотой в общем повышается и на высотах 50-55 км достигает + 10°, -10°. Обратим внимание на важную деталь. Зимой в стратосфере высоких широт температура выше тропопаузы понижается от -60 до -75° и лишь выше 30 км вновь возрастает до -15°. Летом, начиная от тропопаузы, температура с высотой повышается и на 50 км достигает + 10°. Выше стратопаузы вновь начинается понижение температуры с высотой, и на уровне 80 км она не превышает -70°, -90°.

Из рисунка 5 следует, что в слое 10-40 км температура воздуха зимой и летом в высоких широтах резко различна. Зимой, в условиях полярной ночи, температура здесь достигает -60°, -75°, а летом минимум -45° находится вблизи тропопаузы. Выше тропопаузы температура возрастает и на высотах 30-35 км составляет лишь -30°, -20°, что вызвано прогреванием воздуха в слое озона в условиях полярного дня. Из рисунка следует также, что даже в одном сезоне и на одном и том же уровне температура неодинакова. Разность их между различными широтами превышает 20-30°. При этом неоднородность особенно значительна в слое низких температур (18-30 км) и в слое максимальных температур (50-60 км) в стратосфере, а также в слое низких температур в верхней мезосфере (75-85 км).


Средние величины температуры, приведенные на рисунке 5, получены по данным наблюдений в северном полушарий, однако, судя по имеющимся сведениям, они могут быть отнесены и к южному полушарию. Некоторые различия имеются главным образом в высоких широтах. Над Антарктидой зимой температура воздуха в тропосфере и нижней стратосфере заметно ниже, чем над Центральной Арктикой.

Ветры на высотах. Сезонным распределением температуры обусловлена довольно сложная система воздушных течений в стратосфере и мезосфере.

На рисунке 6 представлен вертикальный разрез поля ветра в атмосфере между поверхностью земли и высотой 90 км зимой и летом над северным полушарием. Изолиниями изображены средние скорости преобладающего ветра (в м/сек). Из рисунка следует, что режим ветра зимой и летом в стратосфере резко различен. Зимой как в тропосфере, так и в стратосфере преобладают западные ветры с максимальными скоростями, равными около


100 м/сек на высоте 60-65 км. Летом западные ветры преобладают лишь до высот 18-20 км. Выше они становятся восточными, с максимальными скоростями до 70 м/сек на высоте 55-60 км.

Летом выше мезосферы ветры становятся западными, а зимой - восточными.

Термосфера. Выше мезосферы расположена термосфера, для которой характерно повышение температуры с высотой. По полученным данным, преимущественно с помощью ракет, установлено, что в термосфере уже на уровне 150 км температура воздуха достигает 220-240°, а на уровне 200 км более 500°. Выше температура продолжает повышаться и на уровне 500-600 км превышает 1500°. На основе данных, полученных при запусках искусственных спутников Земли, найдено, что в верхней термосфере температура достигает около 2000° и в течение суток значительно колеблется. Возникает вопрос, чем объяснить такую высокую температуру в высоких слоях атмосферы. Напомним, что температура газа - это мера средней скорости движения молекул. В нижней, наиболее плотной части атмосферы молекулы газов, составляющих воздух, при движении часто сталкиваются между собой и мгновенно передают друг другу кинетическую энергию. Поэтому кинетическая энергия в плотной среде в среднем одна и та же. В высоких слоях, где плотность воздуха очень мала, столкновения между молекулами, находящимися на больших расстояниях, происходят реже. При поглощении энергии скорость молекул в промежутке между столкновениями сильно изменяется; к тому же молекулы более легких газов движутся с большей скоростью, чем молекулы тяжелых газов. Вследствие этого температура газов может быть различной.

В разреженных газах сравнительно немного молекул весьма малых размеров (легких газов). Если они движутся с большими скоростями, то и температура в данном объеме воздуха будет велика. В термосфере в каждом кубическом сантиметре воздуха содержатся десятки и сотни тысяч молекул различных газов, в то время как у поверхности земли их около сотни миллионов миллиардов. Поэтому чрезмерно высокие значения температуры в высоких слоях атмосферы, показывая скорость перемещения молекул в этой весьма неплотной среде, не могут вызвать даже небольшого нагревания находящегося здесь тела. Подобно тому, как человек не чувствует высокой температуры при ослепительном освещении электрических ламп, хотя нити накала в разреженной среде мгновенно раскаляются до нескольких тысяч градусов.

В нижней термосфере и мезосфере сгорает, не долетая до поверхности земли, основная часть метеорных потоков.

Имеющиеся сведения о слоях атмосферы выше 60-80 км еще недостаточны для окончательных выводов о строении, режиме и процессах, развивающихся в них. Однако известно, что в верхней мезосфере и нижней термосфере режим температуры создается в результате превращения молекулярного кислорода (О 2) в атомарный (О), которое происходит под действием ультрафиолетовой солнечной радиации. В термосфере на режим температуры большое влияние оказывает корпускулярная, рентгеновская и. ультрафиолетовая радиация Солнца. Здесь даже в течение суток происходят резкие изменения температуры и ветра.

Ионизация атмосферы. Наиболее интересной особенностью атмосферы выше 60-80 км является ее ионизация, т. е. процесс образования огромного количества электрически заряженных частиц - ионов. Так как ионизация газов является характерной для нижней термосферы, то ее называют также и ионосферой.

Газы в ионосфере находятся большей частью в атомарном состоянии. Под действием ультрафиолетового и корпускулярного излучений Солнца, обладающих большой энергией, происходит процесс отщепления электронов от нейтральных атомов и молекул воздуха. Такие атомы и молекулы, потерявшие один или несколько электронов, становятся положительно заряженными, а свободный электрон может присоединиться снова к нейтральному атому или молекуле и наделить их своим отрицательным зарядом. Такие положительно и отрицательно заряженные атомы и молекулы называются ионами, а газы - ионизированными, т. е. получившими электрический заряд. При большей концентрации ионов газы становятся электропроводными.

Процесс ионизации наиболее интенсивно происходит в мощных слоях, ограниченных высотами 60-80 и 220-400 км. В этих слоях существуют оптимальные условия для ионизации. Здесь плотность воздуха заметно больше, чем в верхней атмосфере, а поступление ультрафиолетовой и корпускулярной радиации Солнца достаточно для процесса ионизации.

Открытие ионосферы является одним из важных и блестящих достижений науки. Ведь отличительной особенностью ионосферы является ее влияние на распространение радиоволн. В ионизированных слоях радиоволны отражаются, и поэтому становится возможной дальняя радиосвязь. Заряженные атомы-ионы отражают короткие радиоволны, и они вновь возвращаются на земную поверхность, но уже в значительном отдалении от места радиопередачи. Очевидно, этот путь короткие радиоволны совершают несколько раз, и таким образом обеспечивается дальняя радиосвязь. Если бы не ионосфера, то для передач сигналов радиостанций на большие расстояния было бы необходимо строить дорогостоящие радиорелейные линии.

Однако известно, что иногда радиосвязь на коротких волнах нарушается. Это происходит в результате хромосферных вспышек на Солнце, благодаря которым резко усиливается ультрафиолетовое излучение Солнца, приводящее к сильным возмущениям ионосферы и магнитного поля Земли - магнитным бурям. При магнитных бурях нарушается радиосвязь, так как движение заряженных частиц зависит от магнитного поля. Во время магнитных бурь ионосфера хуже отражает радиоволны или пропускает их в космос. Главным образом с изменением солнечной активности, сопровождающейся усилением ультрафиолетового излучения, увеличивается электронная плотность ионосферы и поглощение радиоволн в дневные часы, приводящее к нарушению работы радиосвязи на коротких волнах.

Согласно новым исследованиям в мощном ионизированном слое имеются зоны, где концентрация свободных электронов достигает несколько большей концентрации, чем в соседних слоях. Известны четыре такие зоны, которые располагаются на высотах около 60-80, 100-120, 180-200 и 300-400 км и обозначаются буквами D , E , F 1 и F 2 . При усиливающемся излучении Солнца заряженные частицы (корпускулы) под влиянием магнитного поля Земли отклоняются в сторону высоких широт. Войдя в атмосферу, корпускулы усиливают ионизацию газов настолько, что начинается их свечение. Так возникают полярные сияния - в виде красивых многокрасочных дуг, загорающихся в ночном небе преимущественно в высоких широтах Земли. Полярные сияния сопровождаются сильными магнитными бурями. В таких случаях полярные сияния становятся видимыми в средних широтах, а в редких случаях даже в тропической зоне. Так, например, интенсивное сияние, наблюдавшееся 21 - 22 января 1957 г., было видно почти во всех южных районах нашей страны.

С помощью фотографирования полярных сияний из двух пунктов, находящихся на расстоянии нескольких десятков километров, с большой точностью определяется высота сияния. Обычно полярные сияния располагаются на высоте около 100 км, нередко они обнаруживаются на высоте нескольких сотен километров, а иногда на уровне около 1000 км. Хотя природа полярных сияний выяснена, однако остается еще много нерешенных вопросов, связанных с этим явлением. До сих пор неизвестны причины многообразия форм полярных сияний.

По данным третьего советского спутника, между высотами 200 и 1000 км днем преобладают положительные ионы расщепленного молекулярного кислорода, т. е. атомарного кислорода (О). Советские ученые исследуют ионосферу с помощью искусственных спутников серии «Космос». Американские ученые изучают ионосферу также с помощью спутников.

Поверхность, разделяющая термосферу от экзосферы, испытывает колебания в зависимости от изменения солнечной активности и других факторов. По вертикали эти колебания достигают 100-200 км и более.

Экзосфера (сфера рассеяния) - самая верхняя часть атмосферы, расположена выше 800 км. Она мало изучена. По данным наблюдений и теоретических расчетов температура в экзосфере с высотой возрастает предположительно до 2000°. В отличие от нижней ионосферы, в экзосфере газы настолько разрежены, что частицы их, двигаясь с огромными скоростями, почти не встречаются друг с другом.

Еще сравнительно недавно предполагали, что условная граница атмосферы находится на высоте около 1000 км. Однако на основе торможения искусственных спутников Земли установлено, что на высотах 700-800 км в 1 см 3 содержится до 160 тыс. положительных ионов атомного кислорода и азота. Это дает основание предполагать, что заряженные слои атмосферы простираются в космос на значительно большее расстояние.

При высоких температурах на условной границе атмосферы скорости частиц газов достигают приблизительно 12 км/сек. При данных скоростях газы постепенно уходят из области действия земного притяжения в межпланетное пространство. Это происходит в течение длительного времени. Например, частицы водорода и гелия удаляются в межпланетное пространство в течение нескольких лет.

В исследовании высоких слоев атмосферы богатые данные получены как со спутников серии «Космос» и «Электрон», так и геофизических ракет и космических станций «Марс-1», «Луна-4» и др. Ценными оказались и непосредственные наблюдения космонавтов. Так, по фотографиям, сделанным в космосе В. Николаевой-Терешковой, было установлено, что на высоте 19 км от Земли существует пылевой слой. Это подтвердилось и данными, полученными экипажем космического корабля «Восход». По-видимому, существует тесная связь между пылевым слоем и так называемыми перламутровыми облаками, иногда наблюдаемыми на высотах около 20-30 км.

Из атмосферы в космическое пространство. Прежние предположения, что за пределами атмосферы Земли, в межпланетном

пространстве, газы очень разрежены и концентрация частиц не превышает нескольких единиц в 1 см 3 , не оправдались. Исследования показали, что околоземное пространство заполнено заряженными частицами. На этой основе была выдвинута гипотеза о существовании зон вокруг Земли с заметно повышенным содержанием заряженных частиц, т. е. поясов радиации - внутреннего и внешнего. Новые данные помогли внести уточнения. Оказалось, что между внутренним и внешним поясами радиации также имеются заряженные частицы. Число их меняется в зависимости от геомагнитной и солнечной активности. Таким образом, по новому предположению вместо поясов радиации существуют зоны радиации без четко выраженных границ. Границы радиационных зон изменяются в зависимости от солнечной активности. При ее усилении, т. е. когда на Солнце появляются пятна и струи газа, выбрасывающиеся на сотни тысяч километров, возрастает поток космических частиц, которые и питают радиационные зоны Земли.

Радиационные зоны опасны для людей, совершающих полеты на космических кораблях. Поэтому перед полетом в космос определяется состояние и положение радиационных зон, а орбита космического корабля выбирается с таким расчетом, чтобы она проходила вне областей повышенной радиации. Однако высокие слои атмосферы, как и близкое к Земле космическое пространство, еще мало исследованы.

В исследовании высоких слоев атмосферы и околоземного пространства используются богатые данные, получаемые со спутников серии «Космос» и космических станций.

Высокие слои атмосферы менее всего изучены. Однако современные методы ее исследования позволяют надеяться, что в ближайшие годы человек будет знать многие детали строения атмосферы, на дне которой он живет.

В заключение приведем схематический вертикальный разрез атмосферы (рис. 7). Здесь по вертикали отложены высоты в километрах и давление воздуха в миллиметрах, а по горизонтали - температура. Сплошной кривой изображено изменение температуры воздуха с высотой. На соответствующих высотах отмечены и главнейшие явления, наблюдающиеся в атмосфере, а также максимальные высоты, достигнутые радиозондами и другими средствами зондирования атмосферы.

Окружающий мир образован из трех очень разных частей: земли, воды и воздуха. Каждая из них по-своему уникальна и интересна. Сейчас речь пойдет только о последней из них. Что такое атмосфера? Как она возникла? Из чего состоит и на какие части делится? Все эти вопросы чрезвычайно интересны.

Само название «атмосфера» образовано из двух слов греческого происхождения, в переводе на русский они означают «пар» и «шар». А если посмотреть точное определение, то можно прочитать следующее: «Атмосфера - это воздушная оболочка планеты Земля, которая несется вместе с ней в космическом пространстве». Она развивалась параллельно геологическим и геохимическим процессам, которые происходили на планете. И сегодня от нее зависят все процессы, протекающие в живых организмах. Без атмосферы планета стала бы безжизненной пустыней, подобной Луне.

Из чего она состоит?

Вопросом о том, что такое атмосфера и какие элементы в нее входят, заинтересовал людей уже давно. Основные составляющие этой оболочки были известны уже в 1774 году. Их установил Антуан Лавуазье. Он обнаружил, что состав атмосферы большей частью образован из азота и кислорода. С течением времени ее составляющие уточнялись. И теперь известно, что в ней находятся еще многие другие газы, а также вода и пыль.

Рассмотрим более подробно то, из чего состоит атмосфера Земли возле ее поверхности. Самый распространенный газ - азот. Его содержится немного больше 78 процентов. Но, несмотря на такое большое количество, в воздухе азот практически не активен.

Следующий по количеству и очень важный по значению элемент - кислород. Этого газа содержится почти 21%, и он как раз проявляет очень высокую активность. Его специфическая функция состоит в окислении мертвого органического вещества, которое в результате этой реакции разлагается.

Газы с низким содержанием, но важным значением

Третий газ, который входит в состав атмосферы, - аргон. Его чуть-чуть меньше, чем один процент. После него идут углекислый газ с неоном, гелий с метаном, криптон с водородом, ксенон, озон и даже аммиак. Но их содержится настолько мало, что процентное содержание таких компонентов равняется сотым, тысячным и миллионным частям. Из них только углекислый газ играет существенную роль, поскольку он является строительным материалом, который необходим растениям для фотосинтеза. Другая его важная функция состоит в том, чтобы не пропускать радиацию и поглощать часть солнечного тепла.

Еще один малочисленный, но важный газ - озон существует для удержания ультрафиолетового излучения, идущего от Солнца. Благодаря этому свойству все живое на планете надежно защищено. С другой стороны, озон влияет на температуру стратосферы. Из-за того, что он поглощает это излучение, происходит нагревание воздуха.

Постоянство количественного состава атмосферы поддерживается безостановочным перемешиванием. Ее слои перемещаются как по горизонтали, так и по вертикали. Поэтому в любом месте земного шара достаточно кислорода и нет избытка углекислого газа.

Что еще присутствует в воздухе?

Следует отметить, что в воздушном пространстве можно обнаружить пар и пыль. Последняя состоит из пыльцы и частичек почвы, в городе к ним присоединяются примеси твердых выбросов из выхлопных газов.

А вот воды в атмосфере много. При определенных условиях она конденсируется, и появляются облака и туман. По сути это одно и то же, только первые появляются высоко над поверхностью Земли, а последний стелется по ней. Облака принимают разнообразную форму. Этот процесс зависит от высоты над Землей.

Если они образовались в 2 км над сушей, то их называют слоистыми. Именно из них проливается на землю дождь или падает снег. Над ними до высоты 8 км формируются кучевые облака. Они всегда самые красивые и живописные. Именно их рассматривают и гадают, на что они похожи. Если такие образования появятся на следующих 10 км, они будут очень легкими и воздушными. Их название перистые.

На какие слои делится атмосфера?

Хотя они и имеют сильно отличающиеся друг от друга температуры, очень сложно сказать, на какой конкретной высоте начинается один слой и заканчивается другой. Это деление весьма условное и носит приблизительный характер. Однако слои атмосферы все же существуют и выполняют свои функции.

Самая нижняя часть воздушной оболочки названа тропосферой. Ее толщина увеличивается при перемещении от полюсов к экватору с 8 до18 км. Это самая теплая часть атмосферы, поскольку воздух в ней нагревается от земной поверхности. Большая часть водяного пара сосредоточена в тропосфере, поэтому в ней образуются тучи, выпадают осадки, гремят грозы и дуют ветра.

Следующий слой имеет толщину около 40 км и называется стратосферой. Если наблюдатель переместится в эту часть воздуха, то обнаружит, что небо стало фиолетовым. Это объясняется малой плотностью вещества, которое практически не рассеивает солнечные лучи. Именно в этом слое летают реактивные самолеты. Для них там открыты все просторы, поскольку практически нет облаков. Внутри стратосферы имеется слой, состоящий из большого количества озона.

После нее идут стратопауза и мезосфера. Последняя имеет толщину около 30 км. Она характеризуется резким понижением плотности воздуха и его температуры. Небо для наблюдателя видится в черном цвете. Здесь можно даже днем наблюдать звезды.

Слои, в которых практически нет воздуха

Продолжает строение атмосферы слой под названием термосфера - самая протяженная из всех остальных, ее толщина достигает 400 км. Этот слой отличается огромной температурой, которая может достигать 1700 °C.

Последние две сферы часто объединяют в одну и называют его ионосферой. Это связано с тем, что в них протекают реакции с выделением ионов. Именно эти слои позволяют наблюдать такое явление природы, как северное сияние.

Следующие 50 км от Земли отведены экзосфере. Это внешняя оболочка атмосферы. В ней происходит рассеивание частиц воздуха в космос. В этом слое обычно перемещаются спутники погоды.

Атмосфера Земли заканчивается магнитосферой. Именно она приютила большинство искусственных спутников планеты.

После всего сказанного, не должно остаться вопросов о том, что такое атмосфера. Если возникли сомнения в ее необходимости, то их легко развеять.

Значение атмосферы

Главная функция атмосферы заключается в защите поверхности планеты от перегрева в дневное время и чрезмерного остывания ночью. Следующее важное значение этой оболочки, которое никто не будет оспаривать, в том, чтобы снабжать кислородом всех живых существ. Без этого они задохнулись бы.

Большинство метеоритов сгорают в верхних слоях, так и не долетев до поверхности Земли. И люди могут любоваться летящими огнями, принимая их за падающие звезды. Без атмосферы вся Земля была бы усеяна кратерами. А о защите от солнечного излучения уже говорилось выше.

Как влияет человек на атмосферу?

Очень негативно. Это связано с разрастающейся деятельностью людей. Основная доля всех отрицательных моментов приходится на промышленность и транспорт. Кстати, именно автомобили выделяют почти 60% всех загрязняющих веществ, которые проникают в слои атмосферы. Оставшиеся сорок делят между собой энергетика и промышленность, а также отрасли по уничтожению отходов.

Список вредных веществ, которые ежедневно пополняют состав воздуха, очень длинный. Из-за транспорта в атмосфере оказываются: азот и сера, углерод, синец и сажа, а также сильный канцероген, вызывающий рак кожи - бензопирен.

На долю промышленности приходятся такие химические элементы: сернистый газ, углеводород и сероводород, аммиак и фенол, хлор и фтор. Если процесс будет продолжаться, то скоро ответы на вопросы: «Что такое атмосфера? Из чего она состоит?» будут совсем другими.