Паропроницаемость кирпичной кладки. Паропроницаемость стен – избавляемся от вымыслов. Паропроницаемость в многослойной конструкции


Паропроницаемость стен – избавляемся от вымыслов.

В данной статье мы постараемся дать ответ на следующие частые вопросы: что такое паропроницаемость и нужна ли пароизоляция при строительстве стен дома из пеноблоков или кирпича. Вот только несколько типичных вопросов, которые задают наши клиенты:

« Среди множества различных ответов на форумах прочитал я о возможности заполнения зазора между кладкой из поризованной керамики и облицовочным керамическим кирпичом обычным кладочным раствором. Не противоречит ли это правилу уменьшения паропроницаемости слоёв от внутренних к наружным, ведь паропроницаемость цементно-песчаного раствора более чем в 1,5 раза ниже, чем у керамики ? »

Или вот еще: « Здравствуйте. Имеется дом из газобетонных блоков, хотелось бы если не облицевать весь, то хотя бы украсить дом клинкерной плиткой, но в некоторых источниках пишут что нельзя прямо на стену - она должна дышать, как быть??? А то вот некоторые дают схему что можно...Вопрос: Как керамическая фасадная клинкерная плитка крепится к пеноблокам

Для правильных ответов на такие вопросы нам необходимо разобраться в понятиях «Паропроницаемость» и «Сопротивление паропереносу».

Итак, паропроницаемость слоя материала - это способность пропускать или задерживать водяной пар в результате разности парциального давления водяного пара при одинаковом атмосферном давлении на обеих сторонах слоя материала, характеризуемая величиной коэффициента паропроницаемости или сопротивлением проницаемости при воздействии водяного пара. Единица измерения µ - расчетный коэффициент паропроницаемости материала слоя ограждающей конструкции мг / (м час Па). Коэффициенты для различных материалов можно посмотреть в таблице в СНИП II-3-79.

Коэффициент сопротивления диффузии водяного пара – это безразмерная величина, показывающая, во сколько раз чистый воздух более проницаем для пара, чем какой-либо материал. Сопротивление же диффузии определяют как произведение коэффициента диффузии материала на его толщину в метрах и имеет размерность в метрах. Сопротивление паропроницанию многослойной ограждающей конструкции, определяют по сумме сопротивлений паропроницанию составляющих ее слоев. Но в пункте 6.4. СНИП II-3-79 указано: «Не требуется определять сопротивление паропроницанию следующих ограждающих конструкций: а) однородных (однослойных) наружных стен помещений с сухим или нормальным режимом; б) двухслойных наружных стен помещений с сухим или нормальным режимом, если внутренний слой стены имеет сопротивление паропроницанию более 1,6 м2 ч Па/мг.». Кроме того, в а в том же СНИПе говорится:

«Сопротивление паропроницанию воздушных прослоек в ограждающих конструкциях следует принимать равным нулю независимо от расположения и толщины этих прослоек».

Так что же получается в случае многослойных конструкций? Для исключения накопления влаги в многослойной стене при движении пара изнутри помещения наружу каждый последующий слой должен обладать большей абсолютной паропроницаемостью, чем предыдущий. Именно абсолютной, т.е. суммарной, подсчитанной с учетом толщины определенного слоя. Поэтому говорить однозначно, что газобетон нельзя, к примеру, облицевать клинкерной плиткой, нельзя. В данном случае значение имеет толщина каждого слоя стеновой конструкции. Чем больше толщина, тем меньше абсолютная паропроницаемость. Чем выше значение произведения µ*d, тем менее паропроницаем соответствующий слой материала. Другими словами, для обеспечения паропроницаемости стеновой конструкции произведение µ*d должно увеличиваться от внешних (наружных) слоёв стены к внутренним.

К примеру, облицевать газосиликатные блоки толщиной 200 мм клинкерной плиткой толщиной 14 мм нельзя. При таком соотношении материалов и их толщин способность пропускать пары у отделочного материала будет на 70% меньше, чем у блоков. Если же толщина несущей стены будет 400 мм, а плитки по прежнему 14 мм, то ситуация будет противоположной и способность пропускать пары у плитки будет на 15% больше, чем у блоков.

Для грамотной оценки правильности устройства стеновой конструкции Вам понадобятся значения коэффициентов сопротивления диффузии µ, которые представлены в нижеследующей таблице:

Наименование материала

Плотность, кг/м3

Теплопроводность, Вт/м*К

Коэффициент сопротивления диффузии

Клинкерный кирпич полнотелый

2000

1,05

Клинкерный кирпич пустотелый (с вертикальными пустотами)

1800

0,79

Керамический кирпич полнотелый, пустотелый и пористый и блоки

газосилиткатные.

0,18

0,38

0,41

1000

0,47

1200

0,52


Если для фасадной отделки используется керамическая плитка, то проблемы с паропроницаемостью не будет при любом разумном сочетании толщин каждого слоя стены. Коэффициент сопротивления диффузии µ у керамической плитки будет в диапазоне 9-12, что на порядок меньше, чем у клинкерной плитки. Для возникновения проблемы с паропроницаемостью стены облицованной керамической плиткой толщиной 20 мм, толщина несущей стены из газосиликатных блоков плотностью D500 должна быть менее 60 мм, что противоречит СНиП 3.03.01-87 "Несущие и ограждающие конструкции" п.7.11 таблица №28, который устанавливает минимальную толщину несущей стены 250 мм.

Аналогичным образом решается вопрос о заполнении зазоров между различными слоями кладочных материалов. Для этого достаточно рассмотреть данную конструкцию стены, чтобы определит сопротивление паропереносу каждого слоя, включая и заполненный промежуток. Действительно, в многослойной конструкции стены каждый последующий слой по направлению из помещения на улицу должен быть более паропроницаем, чем предыдущий. Рассчитаем значение сопротивления диффузии водяного пара для каждого слоя стены. Это значение определяется по формуле: произведение толщины слоя d на коэффициент сопротивления диффузии µ. Например, 1-й слой - керамический блок. Для него выбираем значение коэффициента сопротивления диффузии 5, используя таблицу, приведенную выше. Произведение d х µ = 0,38 х 5= 1,9. 2-й слой - обычный кладочный раствор - имеет коэффициент сопротивления диффузии µ = 100. Произведение d х µ =0,01 х 100 = 1. Таким образом, второй слой - обычный кладочный раствор - имеет значение сопротивления диффузии меньше, чем первый, и не является паробарьером.

Учитывая вышесказанное давайте разберем предполагаемые варианты конструкции стен:

1. Несущая стена из KERAKAM Superthermo c облицовкой пустотелым клинкерным кирпичом FELDHAUS KLINKER.

Для упрощения расчетов примем, что произведение коэффициента сопротивления диффузии µ на толщину слоя материала d равно значению М. Тогда, М супертермо=0,38*6=2,28 метра, а М клинкера(пустотелый, формата NF)=0,115*70=8,05 метра. Поэтому при применении клинкерного кирпича необходим вентиляционный зазор:

Согласно СП 50.13330.2012 "Тепловая защита зданий", приложение Т, таблица Т1 "Расчетные теплотехнические показатели строительных материалов и изделий" коэффициент паропроницаемость оцинкованного нащельника (мю, (мг/(м*ч*Па)) будет равна:

Вывод: внутренний оцинкованный нащельник (смотрим рисунок 1) в светопрозрачных конструкциях может устанавливаться без пароизоляции.

Для устройства пароизоляционного контура рекомендуется:

Пароизоляция мест крепления оцинкованного листа, это можно обеспечить мастикой

Пароизоляция мест стыковки оцинкованного листа

Пароизоляция мест стыковки элементов (оцинкованный лист и витражный ригель или стойка)

Обеспечить отсутствие паропропускания через крепежные элементы (полые заклепки)

Термины и определения

Паропроницаемость - способность материалов пропускать водяной пар через свою толщину.

Водяной пар - газообразное состояние воды.

Точка росы - точка росы характеризует количество влажности в воздухе (содержания водяного пара в воздухе). Температура точки росы определяется как температура окружающей среды, до которой воздух должен охладится, чтобы содержащийся в нем пар достиг состояния насыщения и начал конденсироваться в росу. Таблица 1.

Таблица 1 - Точка росы

Паропроницаемость - измеряется количеством водяного пара, проходящим через 1м2 площади, толщиной 1метр, в течении 1 часа, при разности давлений 1 Па. (согласно СНиПа 23-02-2003). Чем ниже паропроницаемость, тем лучше теплоизоляционный материал.

Коэффициент паропроницаемость (DIN 52615) (мю, (мг/(м*ч*Па)) это отношение паропроницаемости слоя воздуха толщиной 1 метр к паропроницаемости материала той же толщины

Паропроницаемость воздуха можно рассмотреть как константу, равную

0,625 (мг/(м*ч*Па)

Сопротивляемость слоя материала зависит от его толщины. Сопротивляемость слоя материала определяется путем деления толщины на коэффициент паропроницаемости. Измеряется в (м2*ч*Па) /мг

Согласно СП 50.13330.2012 "Тепловая защита зданий", приложение Т, таблица Т1 "Расчетные теплотехнические показатели строительных материалов и изделий" коэффициент паропроницаемость (мю, (мг/(м*ч*Па)) будет равна:

Сталь стержневая, арматурная (7850кг/м3), коэфф. паропроницаемости мю = 0;

Алюминий (2600) = 0; Медь (8500) = 0; Стекло оконное (2500) = 0; Чугун (7200) = 0;

Железобетон (2500) = 0,03; Раствор цементно-песчаный (1800) = 0,09;

Кирпичная кладка из пустотелого кирпича (керамический пустотный с плотностью 1400кг/м3 на цементном песчаном растворе) (1600) = 0,14;

Кирпичная кладка из пустотелого кирпича (керамический пустотный с плотностью 1300кг/м3 на цементном песчаном растворе) (1400) = 0,16;

Кирпичная кладка из сплошного кирпича (шлакового на цементном песчаном растворе) (1500) = 0,11;

Кирпичная кладка из сплошного кирпича (глиняного обыкновенного на цементном песчаном растворе) (1800) = 0,11;

Плиты из пенополистирола плотностью до 10 - 38 кг/м3 = 0,05;

Рубероид, пергамент, толь (600) = 0,001;

Сосна и ель поперек волокон (500) = 0,06

Сосна и ель вдоль волокон (500) = 0,32

Дуб поперек волокон (700) = 0,05

Дуб вдоль волокон (700) = 0,3

Фанера клееная (600) = 0,02

Песок для строительных работ (ГОСТ 8736) (1600) = 0,17

Минвата, каменная (25-50 кг/м3) = 0,37; Минвата, каменная (40-60 кг/м3) = 0,35

Минвата, каменная (140-175 кг/м3) = 0,32; Минвата, каменная (180 кг/м3) = 0,3

Гипсокартон 0,075; Бетон 0,03

Статья дана в ознакомительных целях

Часто в строительных статьях встречается выражение — паропроницаемость бетонных стен. Означает она способность материала пропускать водяные пары, по-народному – «дышать». Данный параметр имеет большое значение, так как в жилом помещении постоянно образуются продукты жизнедеятельности, которые необходимо постоянно выводить наружу.

Общие сведения

Если не создать нормальную вентиляцию в помещении, в нем будет создаваться сырость, что приведет к появлению грибка и плесени. Их выделения могут принести вред нашему здоровью.

С другой стороны — паропроницаемость влияет на способность материала накапливать в себе влагу.Это также плохой показатель, так как чем больше он сможет ее в себе удерживать, тем выше вероятность возникновения грибка, гнилостных проявлений, а также разрушений при замерзании.

Паропроницаемость обозначают латинской буквой μ и измеряют в мг/(м*ч*Па). Величина показывает количество водяного пара, которое может пройти через стеновой материал на площади 1 м 2 и при его толщине 1 м за 1 час, а также разнице наружного и внутреннего давления 1 Па.

Высокая способность проведения водяных паров у:

  • пенобетона ;
  • газобетона ;
  • перлитобетона ;
  • керамзитобетона .

Замыкает таблицу — тяжелый бетон.

Совет: если вам необходимо в фундаменте сделать технологический канал, вам поможет алмазное бурение отверстий в бетоне.

Газобетон

  1. Использование материала в качестве ограждающей конструкции дает возможность избежать скопления ненужной влаги внутри стен и сохранить ее теплосберегающие свойства, что предотвратит возможное разрушение.
  2. Любой газобетонный и пенобетонный блок имеет в своем составе ≈ 60% воздуха, благодаря чему паропроницаемость газобетона признана на хорошем ровне, стены в данном случае могут «дышать».
  3. Водяные парысвободно просачиваются через материал, но не конденсируются в нем.

Паропроницаемость газобетона, так же, как и пенобетона, значительно превосходит тяжелый бетон – у первого 0,18-0,23, у второго — (0,11-0,26), у третьего – 0,03 мг/м*ч*Па.

Особо хочется подчеркнуть, что структура материала обеспечивает ему эффективное удаление влаги в окружающую среду, так что даже при замерзании материала он не разрушается – она вытесняется наружу через открытые поры. Поэтому, подготавливая , следует учитывать данную особенность и подбирать соответствующие штукатурки, шпаклевки и краски.

Инструкция строго регламентирует, чтобы их параметры паропроницаемости были не ниже газобетонных блоков, применяющихся для строительства.

Совет: не забывайте, что параметры паропроницаемости зависят от плотности газобетона и могут отличаться наполовину.

К примеру, если вы используете D400 – у них коэффициент равен 0,23 мг/м ч Па, а у D500 он уже ниже — 0,20 мг/м ч Па. В первом случае цифры говорят о том, что стены будут иметь более высокую «дышащую» способность. Так что при подборе отделочных материалов для стен из газобетона D400, следите, чтобы у них коэффициент паропроницаемости был такой же или выше.

В противном случае это приведет к ухудшению отвода влаги из стен, что скажется на снижении уровня комфорта проживания в доме. Также следует учесть, что если вами была применена для наружной отделки паропроницаемая краска для газобетона, а для внутренней – непаропроницаемые материалы, пар будет просто скапливаться внутри помещения, делая его влажным.

Керамзитобетон

Паропроницаемость керамзитобетонных блоков зависит от количества наполнителя в его составе, а именно керамзита – вспененной обожженной глины. В Европе такие изделия называют эко- или биоблоками.

Совет: если у вас не получается разрезать керамзитоблок обычным кругом и болгаркой, используйте алмазный.
Например, резка железобетона алмазными кругами дает возможность быстро решить поставленную задачу.

Полистиролбетон

Материал является еще одним представителем ячеистых бетонов. Паропроницаемость полистиролбетона обычно приравнивается к дереву. Изготовить его можно своими руками.

Сегодня больше внимания начинает уделяться не только тепловым свойствам стеновых конструкций, а и комфортности проживания в сооружении. По тепловой инертности и паропроницаемости полистиролбетон напоминает деревянные материалы, а добиться сопротивления теплопередачи можно с помощью изменения его толщины.Поэтому обычно применяют заливной монолитный полистиролбетон, который дешевле готовых плит.

Вывод

Из статьи вы узнали, что есть такой параметр у стройматериалов, как паропроницаемость. Он дает возможность выводить влагу за пределы стен строения, улучшая их прочность и характеристики. Паропроницаемость пенобетона и газобетона, а также тяжелого бетона отличается своими показателями, что необходимо учитывать при выборе отделочных материалов. Видео в этой статье поможет найти вам дополнительную информацию по этой тематике.

В отечественных нормах сопротивление паропроницаемости (сопротивление паропроницанию Rп, м2. ч. Па/мг ) нормируется в главе 6 "Сопротивление паропроницанию ограждающих конструкций" СНиП II-3-79 (1998) "Строительная теплотехника".

Международные стандарты паропроницаемости строительных материалов приводятся в стандартах ISO TC 163/SC 2 и ISO/FDIS 10456:2007(E) - 2007 год.

Показатели коэффициента сопротивления паропроницанию определяются на основании международного стандарта ISO 12572 "Теплотехнические свойства строительных материалов и изделий - Определение паропроницаемости". Показатели паропроницаемости для международных норм ISO определялись лабораторным способом на выдержанных во времени (не только что выпущенных) образцах строительных материалов. Паропроницаемость определялась для строительных материалов в сухом и влажном состоянии.
В отечественном СНиП приводятся лишь расчетные данные паропроницаемости при массовом отношении влаги в материале w, %, равном нулю.
Поэтому для выбора строительных материалов по паропроницаемости при дачном строительстве лучше ориентироваться на международные стандарты ISO , котрые определяют паропроницаемость "сухих" строительных материалов при влажности менее 70% и "влажных" строительных материалов при влажности более 70%. Помните, что при оставлении "пирогов" паропроницаемых стен, паропроницаемость материалов изнутри-кнаружи не должна уменьшаться, иначе постепенно произойдет "замокание" внутренних слоев строительных материалов и значительно увеличится их теплопроводность.

Паропроницаемость материалов изнутри кнаружи отапливаемого дома должна уменьшаться: СП 23-101-2004 Проектирование тепловой защиты зданий, п.8.8: Для обеспечения лучших эксплуатационных характеристик в многослойных конструкциях зданий с теплой стороны следует располагать слои большей теплопроводности и с большим сопротивлением паропроницанию, чем наружные слои. По данным Т.Роджерс (Роджерс Т.С. Проектирование тепловой защиты зданий. / Пер. с англ. - м.: си, 1966) Отдельные слои в многослойных ограждениях следует располагать в такой последовательности, чтобы паропроницаемость каждого слоя нарастала от внутренней поверхности к наружной. При таком расположении слоев водяной пар, попавший в ограждение через внутреннюю поверхность с возрастающей легкостью, будет проходить через все спои ограждения и удаляться из ограждения с наружной поверхности. Ограждающая конструкция будет нормально функционировать, если при соблюдении сформулированного принципа, паропроницаемость наружного слоя, как минимум, в 5 раз будет превышать паропроницаемость внутреннего слоя.

Механизм паропроницаемости строительных материалов:

При низкой относительной влажности влага из атмосферы в виде отдельных молекул водяного пара. При повышении относительной влажности поры строительных материалов начинают заполняться жидкостью и начинают работать механизмы смачивания и капиллярного подсоса. При повышении влажности строительного материала его паропроницаемость увеличивается (снижается коэффициент сопротивления паропроницаемости).

Показатели паропроницаемости "сухих" строительных материалов по ISO/FDIS 10456:2007(E) применимы для внутренних конструкций отапливаемых зданий. Показатели паропроницаемости "влажных" строительных материалов применимы для всех наружных конструкций и внутрених конструкций неотапливаемых зданий или дачных домов с переменным (временным) режимом отопления.

Таблица паропроницаемости - это полная сводная таблица с данными по паропроницаемости всех возможных материалов, используемых в строительстве. Само слово «паропроницаемость» означает способность слоев строительного материала либо пропускать, либо задерживать водяные пары из-за разных значений давления на обе стороны материала при одинаковом показателе атмосферного давления. Эта способность так же называется коэффициентом сопротивляемости и определяется специальными величинами.

Чем выше показатель паропроницаемости, тем больше стена может вместить в себя влаги, а это значит, что у материала низкая морозостойкость.

Таблица паропроницаемости указывается на следующие показатели:

  1. Тепловая проводимость - это, своего рода, показатель энергетического переноса тепла от более нагретых частиц к менее нагретым частицам. Следовательно, устанавливается равновесие в температурных режимах. Если в квартире установлена высокая теплопроводность, то это является максимально комфортными условиями.
  2. Тепловая емкость. С помощью нее можно рассчитать количество подаваемого тепла и содержащегося тепла в помещении. Обязательно необходимо подводить его к вещественному объему. Благодаря этому можно зафиксировать температурное изменение.
  3. Тепловое усвоение - это ограждающее конструкционное выравнивание при температурных колебаниях. Иными словами, тепловое усвоение - это степень поглощения поверхностями стен влаги.
  4. Тепловая устойчивость - это способность оградить конструкции от резких колебаний тепловых потоков.

Полностью весь комфорт в помещении будет зависеть от этих тепловых условий, именно поэтому при строительстве так необходима таблица паропроницаемости , так как она помогает эффективно сравнить разнообразные типы паропроницаемости.

С одной стороны, паропроницаемость хорошо влияет на микроклимат, а с другой - разрушает материалы, из которых построен дома. В таких случаях рекомендуется устанавливать слой пароизоляции с внешней стороны дома. После этого утеплитель не будет пропускать пар.

Пароизоляция - это материалы, которые применяют от негативного воздействия воздушных паров с целью защиты утеплителя.

Существует три класса пароизоляции. Они различаются по механической прочности и сопротивлению паропроницаемости. Первый класс пароизоляции - это жесткие материалы, в основе которых фольга. Ко второму классу относятся материалы на основе полипропилена или полиэтилена. И третий класс составляют мягкие материалы.

Таблица паропроницаемости материалов.

Таблица паропроницаемости материалов - это строительные нормативы международных и отечественных стандартов паропроницаемости строительных материалов.

Таблица паропроницаемости материалов.

Материал

Коэффициент паропроницаемости, мг/(м*ч*Па)

Алюминий

Арболит, 300 кг/м3

Арболит, 600 кг/м3

Арболит, 800 кг/м3

Асфальтобетон

Вспененный синтетический каучук

Гипсокартон

Гранит, гнейс, базальт

ДСП и ДВП, 1000-800 кг/м3

ДСП и ДВП, 200 кг/м3

ДСП и ДВП, 400 кг/м3

ДСП и ДВП, 600 кг/м3

Дуб вдоль волокон

Дуб поперек волокон

Железобетон

Известняк, 1400 кг/м3

Известняк, 1600 кг/м3

Известняк, 1800 кг/м3

Известняк, 2000 кг/м3

Керамзит (насыпной, т.е. гравий), 200 кг/м3

0,26; 0,27 (СП)

Керамзит (насыпной, т.е. гравий), 250 кг/м3

Керамзит (насыпной, т.е. гравий), 300 кг/м3

Керамзит (насыпной, т.е. гравий), 350 кг/м3

Керамзит (насыпной, т.е. гравий), 400 кг/м3

Керамзит (насыпной, т.е. гравий), 450 кг/м3

Керамзит (насыпной, т.е. гравий), 500 кг/м3

Керамзит (насыпной, т.е. гравий), 600 кг/м3

Керамзит (насыпной, т.е. гравий), 800 кг/м3

Керамзитобетон, плотность 1000 кг/м3

Керамзитобетон, плотность 1800 кг/м3

Керамзитобетон, плотность 500 кг/м3

Керамзитобетон, плотность 800 кг/м3

Керамогранит

Кирпич глиняный, кладка

Кирпич керамический пустотелый (1000 кг/м3 брутто)

Кирпич керамический пустотелый (1400 кг/м3 брутто)

Кирпич, силикатный, кладка

Крупноформатный керамический блок (тёплая керамика)

Линолеум (ПВХ, т.е. ненатуральный)

Минвата, каменная, 140-175 кг/м3

Минвата, каменная, 180 кг/м3

Минвата, каменная, 25-50 кг/м3

Минвата, каменная, 40-60 кг/м3

Минвата, стеклянная, 17-15 кг/м3

Минвата, стеклянная, 20 кг/м3

Минвата, стеклянная, 35-30 кг/м3

Минвата, стеклянная, 60-45 кг/м3

Минвата, стеклянная, 85-75 кг/м3

ОСП (OSB-3, OSB-4)

Пенобетон и газобетон, плотность 1000 кг/м3

Пенобетон и газобетон, плотность 400 кг/м3

Пенобетон и газобетон, плотность 600 кг/м3

Пенобетон и газобетон, плотность 800 кг/м3

Пенополистирол (пенопласт), плита, плотность от 10 до 38 кг/м3

Пенополистирол экструдированный (ЭППС, XPS)

0,005 (СП); 0,013; 0,004

Пенополистирол, плита

Пенополиуретан, плотность 32 кг/м3

Пенополиуретан, плотность 40 кг/м3

Пенополиуретан, плотность 60 кг/м3

Пенополиуретан, плотность 80 кг/м3

Пеностекло блочное

0 (редко 0,02)

Пеностекло насыпное, плотность 200 кг/м3

Пеностекло насыпное, плотность 400 кг/м3

Плитка (кафель) керамическая глазурованная

Плитка клинкерная

низкая; 0,018

Плиты из гипса (гипсоплиты), 1100 кг/м3

Плиты из гипса (гипсоплиты), 1350 кг/м3

Плиты фибролитовые и арболит, 400 кг/м3

Плиты фибролитовые и арболит, 500-450 кг/м3

Полимочевина

Полиуретановая мастика

Полиэтилен

Раствор известково-песчаный с известью (или штукатурка)

Раствор цементно-песчано-известковый (или штукатурка)

Раствор цементно-песчаный (или штукатурка)

Рубероид, пергамин

Сосна, ель вдоль волокон

Сосна, ель поперек волокон

Фанера клееная

Эковата целлюлозная