Абсолютная и относительная влажность. Точка росы. Определение точки росы в стене Температура выпадения росы

Во время проектирования тепловой изоляции жилых зданий специалистами всегда производится расчет точки росы с целью определения ее положения в наружной стене. Это позволяет понять, в каком месте есть большая вероятность выделения значительного количества конденсата, и таким образом выяснить, насколько выбранный материал ограждения соответствует условиям эксплуатации.

Мы не станем выкладывать здесь расчет точки росы по формулам, который принято делать в строительстве, так как он довольно сложен и громоздок. Кстати, этим пользуются многие недобросовестные продавцы стройматериалов, рассказывая нам о выделении влаги внутри тех или иных утеплителей. Цель данной статьи – помочь обычному домовладельцу самому определить точку росы в стене и использовать это на практике.

Что такое точка росы

Надо понимать, что воздух всегда содержит в себе водяной пар, количество которого зависит от многих условий. Внутри помещений пар выделяется от человека и от разных повседневных процессов его жизнедеятельности – стирки, уборки, приготовления пищи и так далее.

Снаружи содержание влаги в воздухе зависит от погодных условий, это понятно. Причем насыщение воздушной смеси парами имеет свой предел, при достижении которого начинается конденсация влаги и появляется туман.

Принято считать, что в этот момент воздух вобрал в себя максимально возможное количество пара и его относительная влажность (обозначается буквой ω) составляет 100%. Дальнейшее насыщение как раз и приводит к появлению тумана – мелких капелек воды, находящихся во взвешенном состоянии. Тем не менее всем доводилось наблюдать выпадение конденсата на различных поверхностях и без всякого тумана.

Так бывает, когда не полностью насыщенный парами воздух (влажность менее 100%) соприкасается с поверхностью, чья температура на несколько градусов ниже его собственной. Фокус в том, что воздушная смесь при различной температуре может вместить разное количество пара. Чем температура выше, тем больше влаги она может впитать. Поэтому, когда смесь с относительной влажностью 80% контактирует с более холодным предметом, то она резко охлаждается, предел ее насыщения снижается, а относительная влажность достигает 100%.


В этот момент и начинается выпадение конденсата на поверхности, возникает так называемая точка росы. Именно это явление можно наблюдать летом на траве. Утром земля и трава еще холодные, а солнце быстро прогревает воздух, влажность его около земли быстро достигает 100% и выпадает роса. Примечательно, что процесс конденсации сопровождается выделением тепловой энергии, что была затрачена ранее на парообразование. Оттого роса быстро сходит.

Получается, что температура точки росы – величина переменная и зависит от относительной влажности и температуры воздуха в определенный момент. На практике эти величины определяются с помощью различных измерителей, - термометров и психрометров. То есть, проведя измерение температуры и влажности воздуха, можно предположить, при какой температуре поверхности возникнет точка росы по таблицам, о чем речь пойдет далее.

Для справки. Чтобы определить влажность наружного воздуха, сейчас вовсе не обязательно проводить какие-то измерения, достаточно взглянуть на метеопрогноз в интернете. Там указывается и относительная влажность.

Определение точки росы

На данный момент нет смысла задумываться над тем, как рассчитать точку росы, поскольку это давно уже сделано специалистами, а результаты сведены в таблицу. В ней указываются значения температур поверхностей, ниже которых из воздуха с различной влажностью начинает выделяться конденсат.


Как видите, фиолетовым цветом здесь выделена нормативная температура в помещении в зимнее время года – 20 °С, а зеленым обозначен сектор, что охватывает диапазон нормированной влажности – от 50 до 60%. При этом точка росы колеблется от 9.3 до 12 °С. То есть, при соблюдении всех норм конденсация влаги внутри дома невозможна, поскольку в нем нет поверхностей с такой температурой.


Другое дело – наружная стена. Изнутри ее омывает воздух, нагретый до +20 °С, а снаружи – минус 20 °С, а то и больше. Значит, в толще стены температура постепенно растет от минус 20 °С до + 20 °С и в каком-то месте она обязательно будет равна 12 °С, что при влажности 60% даст точку росы. Но для этого еще нужно, чтобы водяной пар добрался до этого места сквозь материал ограждения. И тут возникает еще один фактор, влияющий на определение точки росы – паропроницаемость материала, которая всегда учитывается при строительстве.


Теперь можно перечислить все факторы, влияющие на образование влаги внутри наружных стен в процессе эксплуатации:

  • температура воздуха;
  • относительная влажность воздуха;
  • температура в толще стены;
  • паропроницаемость материала ограждения.

Примечание. Для измерения этих показателей в толще эксплуатируемых стен не существует никаких датчиков или анализаторов, их можно получить только расчетным путем.

Паропроницаемость – это характеристика, показывающая, какое количество водяного пара может пропустить через себя тот или иной материал за определенный промежуток времени. К проницаемым относятся все конструктивные материалы с открытыми порами – бетон, кирпич, дерево и так далее. В народе бытует выражение, что дома, возведенные из них, «дышат». Примерами пористого утеплителя служат минеральная вата и керамзит.

Из всего вышесказанного можно сделать вывод, что в обычных и утепленных стенах всегда есть условия для возникновения точки росы. Вот в этом месте и появляется много небылиц и страшилок, связанных с огромным количеством воды, прямо-таки вытекающим из стен при конденсации, и растущей на них массой плесени. В действительности все не так страшно, ведь эта точка не занимает стационарную позицию в ограждении. С течением времени условия с обеих сторон конструкции постоянно меняются, отчего и точка росы в стене перемещается. В строительстве это называется зоной возможной конденсации.


Так как ограждение проницаемо, то оно способно самостоятельно избавляться от выделяющейся влаги, при этом важную роль играет вентиляция с обеих сторон. Неспроста наружное утепление стен минеральной ватой делается вентилируемым, ведь точка росы в этом случае находится в утеплителе. Если все сделано правильно, то выделяющаяся внутри ваты влага через поры покидает ее и уносится потоком вентиляционного воздуха.

Вот почему так важно устроить хорошую вентиляцию в жилых помещениях, она удаляет не только вредные вещества, но и лишнюю влагу. Стена мокнет лишь в одном случае: когда конденсация происходит постоянно и в течение длительного времени, а влаге деться некуда. В нормальных условиях материал просто не успевает напитаться водой.


Современные полимерные утеплители практически не пропускают пар, поэтому при утеплении стен их лучше располагать снаружи. Тогда необходимая для конденсации температура будет внутри пенопласта или пенополистирола, но пары к этому месту не доберутся, а потому и увлажнения не возникнет. И наоборот, утеплять полимером изнутри не стоит, так как точка росы останется в стене, а влага станет выделяться на стыке двух материалов.

Пример такой конденсации – окно с одним стеклом в зимнее время, оно не пропускает пары, отчего на внутренней поверхности образуется вода.

Внутреннее утепление осуществимо при таких условиях:

  • стена достаточно сухая и относительно теплая;
  • утеплитель должен быть паропроницаемым, дабы выделяющаяся влага могла покинуть конструкцию;
  • в доме должна хорошо действовать вентиляция.

Заключение

Итак, точка росы внутри строительных конструкций присутствует всегда, при этом рассчитать количество образующейся влаги по формулам весьма сложно, можно лишь определить зону конденсации. А это дает возможность принять меры по удалению влаги, а иногда и вовсе предотвратить ее появление с помощью паронепроницаемых утеплителей.

Построил стены, завел дом под крышу и поставил окна – готова коробка. Именно на этом этапе заканчивается «конструктивный» период стройки и начинается установка оборудования, утепление стен дома и дальнейшая его подготовка под чистовую отделку.

И именно на этом этапе важно правильно смонтировать утеплитель, да и весь пирог утепления на стенах дома, чтобы в дальнейшем не получить себе такую головную боль, как точка росы в стене со стороны жилого помещения.

Что за зверь такой – точка росы и почему плоха именно точка росы в стене, как это выглядит на практике?

Для начала немного теории, а затем практически примеры из собственного опыта, который я получил, приобретая коробку дома с уже установленным слоем утеплителя.

Температура точки росы

Точка росы имеет обыкновение двигаться. Зависит этот момент от двух показателей – температуры и влажности.

Каждый из них также делится пополам – на температуру в помещении и на улице, на влажность в помещении и на улице.

При всех расчетах и формулах, которые используются для того, чтобы рассчитать точку росы, предполагается, что влага будет конденсироваться из пара при движении изнутри наружу. Именно такая ситуация наблюдается зимой, когда температура и влажность в помещении выше, чем температура и влажность на улице. Температура точки росы будет расчетной при расчетных показателях для наружных и внутренних условий.

Летом, когда влажность и температура на улице обыкновенно выше, чем влажность и температура в помещении, точка росы не имеет такого значения. Почему? Потому что разница температур невысока и оба показателя температуры, уличный и домовой, находятся в положительных значениях.

А еще потому, что даже если точка росы в стене могла бы образоваться при плюсовых значениях обеих температур, сильного влияния на комфорт проживания в доме это бы не оказало.

Другое дело зимой. Влага, конденсируемая из пара, при низких температурах попадает в утеплитель и стену, и там замерзает. Для утеплителя намокание чревато либо полной потерей теплоизоляционных свойств (базальтовая вата), либо разрушением при замерзании воды (пенопласт). Для стены все то же самое, особенно для газобетонных и газосиликатных блоков.

Сам лично наблюдал печальную картину разрушения стены блочного дома в зимний период из-за неправильно сделанного утепления. К весне в стене из газосиликата толщиной 400 миллиметров были почти сквозные дыры.

Как рассчитать точку росы

Для расчета точки росы используется таблица значений конденсации водяного пара в зависимости от показателей влажности и температуры. Берется значение наружной и внутренней температуры и значение наружной и внутренней влажности. Получается температура точки росы, при которой будет происходить выпадение воды из водяного пара (образование росы).

Что нам дает эта температура? Очень многое. Мы в состоянии рассчитать, где будет конденсироваться пар в пироге утепления, то есть где будет точка росы в стене – в утеплителе, в несущей стене или на внутренней поверхности несущей стены – прямо в комнате.

Естественно, что самый правильный вариант – это точка росы в утеплителе. В этом случае не будет никаких негативных моментов для внутренних помещений. Чтобы не было также негативных моментов для утеплителя, стоит на этапе планирования правильно подбирать тип утеплителя для стен.

Менее приемлемый вариант – это точка росы в стене дома, которая является несущей. Здесь негативные моменты для внутренних помещений будут зависеть от материала стены. Получается такая ситуация тогда, когда утеплитель смонтирован неправильно или неправильно выбрана толщина утеплителя.

Самый неприемлемый вариант – это точка росы внутри помещения, на внутренней поверхности несущей стены. Обычно это случается тогда, когда дом совсем не утеплен или утеплен неправильно – изнутри.

Точка росы в доме – что делать?

Итак, обещанный пример из собственного опыта. Я приобрел коробку кирпичного дома, которая была утеплена изнутри пенопластом. О чем думали те люди, которые строили эту коробку, остается только гадать. Благодаря такому утеплению получилась точка росы в доме, на внутренней поверхности несущих стен, между кирпичом и утеплителем.

В чем выразилась точка росы в доме, в каких негативных моментах?

Их было два. Во-первых, кирпичная стена изнутри была всегда сырая в небольшие плюсовые и минусовые температуры. В комнатах стоял затхлый запах, при вскрытии под всем пенопластом были большие очаги плесени.

Во-вторых, в минусовые температуры было невозможно нормально обогреть этот дом, кирпичная кладка была исключена из теплового контура дома, благодаря тому, что была отсечена от теплого воздуха помещений пенопластом.

Что я сделал, чтобы победить точку росы в доме?

Во-первых, был демонтирован весь пенопласт с внутренних поверхностей несущих стен.

Во-вторых, утеплитель был смонтирован снаружи и был оштукатурен по методике мокрого фасада.

И, в-третьих, вместо прежнего внутреннего утепления в 50 миллиметров, было установлено наружное утепление в 150 миллиметров.

При правильном утеплении — точка росы снаружи, в доме — тепло и сухо.

Что стало? Стало тепло, сухо и комфортно.

ФИНАЛЬНАЯ ЗАМЕТКА. Не делайте воздушную прослойку между несущей стеной и воздухом комнаты. Часто обшивают стены изнутри ГКЛ – это дешевле и быстрее, чем штукатурить. Однако в воздушном зазоре между ГКЛ и кирпичом образуются микросквозняки, которые препятствуют теплопередаче и прогреву внутренней части кирпичной кладки.

Я свои кирпичные стены изнутри заштукатурил самой обычной штукатурной смесью. Сверху теперь можно красить или клеить обои. Толщина обоев такова, что ими, как теплоизолятором, можно пренебречь.

Точкой росы называется температура, до которой должен охладиться воздух, чтобы содержащийся в нём водяной пар достиг состояния насыщения и начал конденсироваться в росу. Проще говоря, это температура, при которой выпадает конденсат.

Температура точки росы определяется только двумя параметрами: температурой и относительной влажностью воздуха. Чем выше относительная влажность, тем точка росы выше и ближе к фактической температуре воздуха. Чем ниже относительная влажность, тем точка росы ниже фактической температуры.

Таблица с точкой росы

Таблицу с температурой точки росы для различных значений температур (от -5°С до 35°С) и относительной влажности (от 40% до 95%) воздуха в помещении можно найти в справочном Приложении Р к СП 23-101-2004 «Проектирование тепловой защиты зданий». К сожалению, в эту таблицу закралось несколько опечаток. Я подготовил для вас , там опечатки исправлены.

Формула расчета точки росы

Вы можете воспользоваться формулой для приблизительного расчёта точки росы Тр (°С) в зависимости от температуры воздуха Т (°С) и его относительной влажности Rh (%):

Формула обладает погрешностью ±0.4 °С в диапазоне температуры воздуха Т от 0°С до 60°С, температуры точки росы Тр от 0°С до 50°С, относительной влажности Rh от 1% до 100%.

Приборы с определением точки росы

Психрометр (гигрометр психрометрический) - прибор для измерения влажности воздуха и его температуры. Психрометр состоит из двух спиртовых термометров, один из них - обычный сухой термометр, а второй имеет устройство увлажнения. Вследствие испарения влаги, увлажнённый термометр охлаждается. Чем ниже влажность, тем меньше его температура. При 100% влажности показания термометров одинаковы. Для определения относительной влажности используют психрометрическую таблицу. Такие приборы в настоящее время используются только в лабораторных условиях.

Наиболее удобны в практике обследования зданий портативные электронные термогигрометры с индикацией температуры и относительной влажности воздуха на цифровом дисплее. Отдельные модели термогигрометров имеют также индикацию точки росы.

Расчет точки росы в тепловизоре

Некоторые модели тепловизоров имеют встроенную функцию расчета точки росы в реальном времени и отображения на термограмме изотермы, наглядно показывающей поверхности, где температура ниже точки росы во время тепловизионной съемки. Такая функция есть, к примеру, линейке тепловизров строительного назначения (серия «B» от «Building») FLIR Systems.

Изотерму по точке росы можно добавить на термограмму позже в программе обработки на компьютере. Для расчета понадобится задать температуру и влажность воздуха. Изотерма закрасит на термограмме все поверхности, температура которых ниже точки росы. Не забывайте, что эта функция показывает опасные для конденсации участки только при услових тепловизионного обследования. Если наружная температура повысится, а внутри влажность упадет, опасные зоны исчезнут с термограммы (конструкции будут теплее, а точка росы ниже). Ниже приведены скриншоты программ FLIR и TESTO.

Точка росы в строительстве

О значении конденсации и точки росы при эксплуатации строительных конструкций, положении точки росы или плоскости возможной конденсации в стенах, оценке дефектности конструкций по критерию точки росы с использованием тепловизионной съемки я напишу в одной из следующих публикаций.

Господа.
Вот задумался я.
На всем нам известном сайте многие не правильно забивают параметры и получают неверные результаты.
А тем временем задаю значения.
Температура снаружи = -25 гр.
Температура внутри + 24 гр.
Влажность снаружи 80%
Влажность внутри 40 % (40-60% минимально необходимая для комфортного самочувствия)

Теперь смотрим что получается:

1. Любимый конструктив частных застройщиков. Газобетон 375 мм со штукатуркой. Можно без штукатурки.

Конденсат = 20.17 гр/м2/час
Точка росы в газобетоне начинает образовываться начиная с 15% влажности внутри дома.
Точка росы находится преимущественно в зоне отрицательных температур.

2. Газобетон утепленный 100 мм пенопласта

Конденсат = 17.69 гр/м2/час
Точка росы находится также в зоне отрицательных температур

3. Газобетон утепленный 100 мм минеральной ватой

Конденсата и точки росы внутри стены нет. Неплохой конструктив.

4. Стена в 2,5 полнотелых кирпича толщиной 64 см. (Привет 90-е)

Конденсат = 17 гр/м2/час
Точка росы находится в зоне отрицательных температур.

5. Кирпичная стена в 1,5 пустотелых кирпича, утепленная минеральной ватой 100 мм.

Конденсата и точки росы внутри стены нет. Мой любимый конструктив. Конечно далее идет вент. зазор 3-4 см и декоративная отделка.

6. Кирпичная стена в 1,5 пустотелых кирпича, утепленная пенопластом 100 мм.

Конденсат = 0.56 гр/м2/час
Точка росы находится в пенопласте. Наверное это не очень хорошо. Ухудшится показатель теплопроводности и теоретически срок службы.

Выводы:
Любая однородная стена из строительных материалов таких как газо-пено блоки, керамзитобетонные блоки, теплая керамика, кирпич и пр. имеет точку росы зимой в своей толще. Это уменьшает срок службы стены, увеличивает вероятность появления высолов на облицовке, ухудшает теплопроводность. Из-за многократных циклов замораживания/оттаивания может материал стены со временем теряет прочность.
Таким образом, любая однородная стена требует утепления.
Утеплитель должен обладать хорошей паропроницаемостью, чтобы не задерживать пар в толще конструкции.
Самая плохая паропроницаемость у экструдированного пенополистирола. Он подходит для утепления бетонных фундаментов и стен, а также плоских кровель по бетонному перекрытию.
Более паропроницаем обычный пенопласт. Он при некоторых условиях подходит для утепления кирпичных стен.
Самый паропроницаемый утеплитель - это минеральная плита. Он подходит для утепления стен из любых материалов.
Естественно между утеплителем (пенопластом или минеральной плитой) и облицовкой должен быть предусмотрен вент. зазор для удаления пара с поверхности утеплителя. Организация вент. зазора в каждом конкретном случае делается по разному.

    Smart2305 сказал(а):

    Чтобы вывести точку росы из толщи стены.

    А зачем? Пусть она живет своей жизнью - "точка росы", вообще вещь сама в себе - не надо из неё делать фобию.
    http://www.aeroc.ru/material/mifi/

    Миф двенадцатый - "без наружного утепления точка росы оказывается в стене"

    «Точка росы», а если говорить более четко, то «плоскость возможной конденсации водяных паров», легко может оказаться внутри утепленной снаружи ограждающей конструкции и практически никогда не окажется в толще однослойной стены.
    Наоборот, однослойная каменная стена менее подвержена увлажнению, чем стены со слоем наружного утеплителя в пределах 50 – 100 мм.
    Дело в том, что плоскость возможной конденсации – это не тот слой стены, температура которого соответствует точке росы воздуха, находящегося в помещении. Плоскость конденсации – это слой, в котором фактическое парциальное давление водяного пара становится равным парциальному давлению насыщенного пара. При этом следует учитывать сопротивление паропроницанию слоев стены, предшествующих плоскости возможной конденсации. Учитывать сопротивление паропроницанию внутренней штукатурки, обоев и т. д.
    Проиллюстрируем наши рассуждения примерами:
    Исходные условия: температура внутреннего воздуха: +20°С, влажность 40%; температура наружного воздуха: -15°С, влажность 90%

    На первом изображении: Плотности реального и насыщенного водяного пара в толще стены
    На втором изображении: Изменение температуры по толщине стены
    --- плотность насыщенного водяного пара
    --- плотность реального водяного пара

    Следующие иллюстрации достаточно наглядно демонстрируют: конденсация становится возможной при уменьшении паропроницамости отделочных слоев или утеплителя по сравнению с предыдущими слоями.

    Однослойная стена с паропроницаемой отделкой лишь в редкие особо морозные зимы может увлажняться конденсируемой влагой. В условиях климата Украины конденсацией паров в толще однослойных стен можно пренебречь.

    Наружное утепление минеральной ватой : При «мокрой» отделке утеплителя конденсация возможна на границе [штукатурка/утеплитель], с поледующим намоканием утеплителя

    Наружное утепление пенополистиролом: Конденсация возможна на границе [несущая стена/утеплитель]

    Traks , 30.01.14

    nadegniy сказал(а):

    Немного поправлю, пар не движется сквозь стену, нет такого...

    Э-э-э... даже комментировать не вижу смысла.
    Ну как можно так вот нести совершенно безграмотную околесицу?

    В зимнее время температура воздуха с внутренней стороны ограждения бывает значительно выше температуры наружного воздуха. Если при этом предположить, что относительные влажности внутреннего и наружного воздуха будут одинаковыми, то упругость водяного пара с внутренней стороны ограждения окажется значительно более высокой, чем с наружной его стороны. Таким образом, в зимнее время наружное ограждение отапливаемых зданий разделяет две воздушные среды с одинаковым барометрическим давлением, но с разными значениями упругости (парциальными давлениями) водяного пара. Разность величин упругости водяного пара в обычных условиях может достигать 1300 Па, а в зданиях с повышенной температурой и высокой относительной влажностью воздуха может быть и значительно выше.
    Разность величин упругости водяного пара с одной и с другой стороны ограждения вызывает поток водяного пара через ограждение от внутренней его стороны к наружной стороне. Это явление носит название диффузии водяного пара через ограждение.

    К. Ф. Фокин
    Строительная теплотехника ограждающих частей зданий #87 , 02.02.14

    Относительная влажность знаете, что такое?
    Это максимум влаги в газообразном состоянии (пар), который может содержаться в воздухе при определенной температуре.
    Если давление пара достигает максимального (100%-ная относительная влажность) для данной температуры значения, то излишки пара превращаются в воду. Но давление выше максимального не растет. И не может давление "накапливаться". #135 , 02.02.14

    Serjei сказал(а):

    Ну вообще то для меня важнее тема точки россы в стене, а не то что вы нашли такой "большой" недостаток ошибки в калькуляторе. Вы принципиально не отвечаете на вопросы про -40 и конструкцию стены. Или вам интереснее писать не о чем подмигивая и улыбаясь?

    Это не ошибка в калькуляторе. Это ошибка в выборе данных.
    Теперь про -40 градусов и т. п.
    Живу я недалеко от Рязанской области (чутка севернее), в Рязани пожил не мало, часто там гощу. -40 на моей памяти было только в год перед московской олимпиадой.
    Ну да ладно. - 40, так -40. При -40 вода безусловно замерзает. Но дело в том что пористость ПБ плотностью 300 кг на куб больше 80%. Т. е. воздуха в этом пенобетоне больше 80%. Т. е. те несколько граммов, что при такой температуре выпадет в зоне конденсации, замерзнув, будут видны разве что через микроскоп. Опасности не представляют от слова вообще.
    Конструкция Ваша мне до фонаря. Я ее не комментировал. Я комментировал лишь расчет.
    Ирония моя связана с тем, что в калькуляторе написано, что (при нормативных расчетных параметрах - они есть там, где выбирали город) в конструкции нет условий для образования конденсата. Она совершенно безопасна. Но Вам почему-то неймется и Вы рассуждаете о неком замерзании конденсата в - 40.
    Ничего что я еще раз подмигну улыбаясь?
    Удачи #326 , 23.03.16

    Иванов Костя сказал(а):

    Весь вопрос сводится к скорости разрушения.

    Неа. Весь вопрос сводится к пористости. Если б Вы внимательно читали других, то узнали бы что пористость ячеистых бетонов (ЯБ - пено и газобетоны) крутится в районе 80%. Т. е. "в среднем по больнице" для того чтобы при переходе из жидкого состояния в твердое (лед) вода не разрушала стенки пор в кубе ЯБ есть аж 800 литров воздушного пространства. Это значит, что если Вы не будете принудительно замачивать ЯБ в емкости с водой, а потом засовывать его в холодильную камеру, то неоткуда взять такого количества влаги, чтобы она при замерзании начала что-то разрушать.
    Даже у кирпича минимум 20% пористости. У самого плотного. 200 литров в кубе - воздух.
    Не кошмарьте. #333 , 24.03.16

    Serjei сказал(а):

    Я вам уже говорил, что про естественную влагу находящуюся в материалах наверно даже ребенку понятно. Мне же интересно, что означает зона конденсации в калькуляторе в моем случае? Ведь каждый материал имеет ограниченное количество циклов заморозки, разморозки, свою морозостойкость. Имея такую зону конденсации будет пенобетон в данном случии терять с годами морозостойкость? Вот что меня интересует, прямые ответы с объяснением, на прямые вопросы.

    Зона конденсации означает, что вероятность выпадения конденсата при указанных параметрах климата внутри и снаружи помещений существует.
    Расчет в калькуляторе показывает, что количество влаги, которое может скопиться в зоне конденсации:
    - будет таковым, что полностью испарится в летний период.
    - не превысит то количество, которое может снижать характеристики (в т. ч. и физико-механические) материала.
    Прямой ответ: морозостойкость терять не будет.
    Объяснение: испытание, определяющее циклы заморозки-разморозки проводится с содержанием влаги в материале, на порядки превышающее то, которое сможет выпасть в исследуемой Вами зоные конденсации. Процедуру проведения испытаний и параметры увлажнения пенобетона (количество влаги) можете поискать в нормативной документации. #376 , 25.03.16

    ArtKs сказал(а):

    Вопрос какая именно влага, откуда, при замерзании разрушает кирпич.



    Нормируется морозостойкость наружных 12 см однослойной кладки.
    Цитирую СП 15.13330 "Каменные и армокаменные конструкции":

    5.2 Проектные марки по морозостойкости каменных материалов для наружной части стен (на толщину 12 см) и для фундаментов (на всю толщину), возводимых во всех строительно-климатических зонах, в зависимости от предполагаемого срока службы конструкций, но не менее 100, 50 и 25 лет, приведены в 5.3 и таблице 1.

    Полнотелый кирпич начинает разрушаться снаружи. Если сбить отслаивающиеся наружные слои, внутри однослойных стен мы обнаружим еще вполне бодренький материал. Это свидетельствует о том, что в однослойных стенах помещений с нормальным режимом эксплуатации влиянием конденсации в толще стен можно пренебречь. Нормативные требования это пренебрежение подтверждают.
    В современных стенах из ГБ, ККК без наружной штукатурки тоже можно пренебрегать конденсацией, а при наличии штукатурки - тщательно проверять расчетную влажность слоя кладки толщиной 20 мм непосредственно под штукатуркой. Если проблемы и возникают при кривом выборе отделки, то именно там. #809 , 14.08.16

    ArtKs сказал(а):

    Кремлевская стена плохой пример, за ней следят.
    Пренебречь точно можно, если стена за утеплителем, она просто не замерзает.
    Но вопрос то был не совсем о том.
    Замерзание "абсолютно сухого"(условность) кирпича, как я понимаю ему не вредит.
    Вопрос какая именно влага, откуда, при замерзании разрушает кирпич.
    Влага приходящая из дома, влага абсорбируемая из воздуха, намокание из-за дождя?
    Какую долю составляет каждый из источников? Что главная причина, а чем можно пренебречь?
    Какой вообще механизм разрушения кирпича?
    Может это где-то в литературе описано?

    В общем случае долговечность материалов определяется их физическими свойствами (пористость, "гидрофобность", теплопроводность, радиационная стойкость); физико-механическими (прочность каркаса (структуры) материала) и химическими свойствами (стойкость к разрушающим химическим реакциям).

    1. Пористость влияет на многие свойства материала. Для большинства материалов напрямую влияет на влагопроницаемость (паропроницаемость) и максимальное влагонакопление. Более легкий (менее плотный) кирпич как правило более влагопроницаем и имеет меньшую морозостойкость. Пористость зависит от состава глин и способа изготовления (формовки, сушки и обжига). Силикатный или прессованный кирпич отличается по процессу изготовления, их пористость так же зависит исходных материалов и технологии изготовления.

    Для керамического кирпича важнейшим этапом является термообработка. Из одного и того же состава можно получить существенно отличающийся по прочности и морозостойкости кирпич.

    2. "Гидрофобность" не рассматривается как отдельное свойство в долговечности, обычно исследуют сорбционную и эксплуатационную влажности, скорость влагонакопления и сушки материала, максимальное водопоглощение. Так или иначе эти свойства связаны с пористостью и строением "порового материала".

    Если грубо, то чем меньше и медленнее воды набирает материал, и чем быстрее он ее отдает, тем выше будет его долговечность. Например, сорбционная влажность качественного керамического кирпича при относительной влажности 97% не превышает 2%. Высоленный, пористый кирпич может насосать из атмосферы до 15%! Естественно, что разрушение такого материала произойдет гораздо быстрее.

    Для защиты старых кладок используют специальные краски, гидрофобные покрытия (если нужно сохранить естественный вид) или если эстетика потеряна, закрывают их штукатуркой или плиткой. Если погулять по центру Москвы, можно увидеть все три варианта защиты. Но некоторые довольно старые кирпичные стены, по моему, стоят "как есть".

    3. Низкая теплопроводность в определенных конструктивных решениях является источником дополнительных механических нагрузок, связанных с тепловым расширением материала. Это наведенное свойство, т. е. не свойство, присущее самому материалу, но мир несовершенен. Если взять, например, стену кирпич-утеплитель-кирпич, то фактически в такой стене будет разрушаться только утеплитель. К сожалению, не только долговечность полимерного утеплителя несопоставима с долговечностью кирпича. Минеральная вата, теплоизоляционный газобетон - все придет в негодность гораздо раньше несущей стены из кирпича и клинкерной облицовки. Любой материал, кроме быть может пеностекла, в такой конструкции уступит кирпичу. Если взять однородную стену из кирпича или газобетона, то она разрушится гораздо быстрее, по сравнению со стеной с меньшим перепадом температур. Тонкая однородная кирпичная стена наружного ограждения проживет меньше, чем толстая.

    4. Радиационная стойкость - как правило подразумевается защита от солнечного излучения. Разрушению от солнца подвержены в первую очередь органические материалы. Также следует помнить, что южные стороны домов в большей степени подвержены разрушению. Большее количество переходов через 0, нагрев до более высоких температур летом. Если кирпич имеет имеет высокую сорбционную влажность, это будет иметь значение.

    5. Механическая прочность является одним из ключевых факторов долговечности наряду с морозостойкостью. Способность материала противостоять как краткосрочным так и долгосрочным нагрузкам существенно увеличивает долговечность материала. Кирпич более высокой марки, полученный по близкому техпроцессу и из близких материалов, более долговечен.

    6. Химическая стойкость подразумевает возможность сопротивлению процессам окисления, выщелачивания, карбонизации и т. п. Качественный кирпич практически инертен к атмосферным химическим воздействиям и поэтому обладает очень большой долговечностью (сотни лет). Однако нужно не забывать, что кирпич кладется на раствор. При кладке здания с проектной долговечностью
    более 100 лет, кладочный раствор должен также отвечать определенным требованиям по прочности, пористости и химической стойкости.

    Я специально не пишу о конструктивных особенностях наружных ограждений из кирпича, которые снижают срок их службы. Пока вроде бы речь идет только об особенностях самого материла "керамический кирпич".

    Извините за длинный пост, но по сравнению с книжками по направлению, это просто коротенькая записочка. #810 , 14.08.16

    Константин Я. сказал(а):

    9.3 Не требуется проверять на выполнение данных норм по паропроницанию следующие ограждающие конструкции:

    Б) двухслойные наружные стены помещений с сухим и нормальным режимами, если внутренний слой стены имеет сопротивление паропроницанию более 1,6 м2·ч·Па/мг."

    Правильно ли я понимаю, что если стена из ГБ имеет сопротивление паропроницанию более 1,6 м2·ч·Па/мг, то практически невозможно сделать "кривой выбор" наружной отделки?

    Нет, Константин, ситуация иная. Газобетон со штукатуркой уже не однослойная конструкция.
    Тезис про 1,6 м2·ч·Па/мг был условно верен при материалах плотностью от 1000 кг/куб.м. Сейчас надо все таки проверять влагонакопление за слоем отделки.
    Здесь какая ситуация: в среднем по толще стены недопустимого влагонакопления не произойдет, но слой за отделкой легко может переувлажниться и намерзающим льдом разрушиться.
    Оговорюсь, не встречал таких проблем на стенах, которые отделывались после начального подсыхания хотя бы в полгода.

Понятие точка росы (далее ТР) используется в проектировании тепловой защиты зданий гражданского и промышленного назначения, является удобным параметром в расчетах систем осушки воздуха и пневматических установок. Точка росы окружающего воздуха учитывается при нанесении антикоррозионных покрытий на металлические подложки.

При температуре подложки ниже, чем ТР воздуха, на подложке присутствует конденсированная влага, не позволяющая достичь нужной адгезии. На крашеной поверхности образуются дефекты типа шелушения или пузырения слоя краски, способствующие возникновению преждевременной коррозии. Правильно выполненный расчет точки росы определяет, какой должна быть теплоизоляция жилого дома с учетом расхода тепла, влажности воздуха и особенностей воздухообмена в пределах помещений.

Температура точки росы служит своеобразным указателем на степень влажности воздуха изнутри жилого помещения. Значение температуры точки росы определяет уровень комфорта проживания в доме. Чем выше точка росы в каркасном доме, тем выше влажность в помещении. Если точка росы температура превышает 20 °C, то для большинства людей нахождение в помещении будет резко дискомфортным.

Атмосфера в такой комнате для сердечников и астматиков является крайне удушливой и непереносимой. Неправильно выполненное определение точки росы в стене жилого дома проводит к осаждению конденсата на поверхности стен и потолка комнаты. Намокшие стены провоцируют образование плесени и развитие микроорганизмов, которые попадают в организм человека вместе с вдыхаемым воздухом. Сконденсированная влага в материалах намокших стен и перекрытий зимой замерзает, резко увеличиваясь в объеме и ослабляя прочностные качества строительной конструкции.

На рисунке ниже показана отсыревшая деревянная стена с грибковыми проявлениями из-за неправильной теплоизоляции.


Физика конденсации пара

Вода присутствует в окружающей обстановке нашего жилища в двух агрегатных состояниях:

  • жидком – это вода для приготовления пищи и санитарно-бытовых нужд;
  • газообразном – пар над кипящей водой или в качестве одной из фракций выдыхаемого воздуха.

Кроме таких очевидных мест следы влаги обязательно имеются в материалах элементов строительной конструкции здания: бетонных или кирпичных стенах, перекрытиях, основании пола. Идеально сухих стройматериалов в природе не существует. При устойчивой теплой погоде пар, присутствующий в воздухе, и влага в стенах жилища находятся в тепловом равновесии.

При этом парциальное давление пара в воздухе со стороны улицы (внешняя сторона стенки) и внутри дома (внутренняя сторона стенки) одинаковое. Значит, никакого движения водяного пара через стенку не происходит. В морозную погоду влажность холодного воздуха низкая, парциальное давление пара в таком воздухе пониженное. В соответствии с законами теплофизики пар повышенного давления (жилое помещение) начинает диффундировать сквозь стеновой материал на холодную улицу, где давление ниже.

Все строительные материалы, из которых возведены стены домов, обладают свойством паропроницаемости. Даже бетонные или кирпичные стены способны пропускать пар через свою толщу, хотя у бетона и кирпича паропроницаемость минимальная.

При прохождении через точку росы в стене пар переходит в жидкое агрегатное состояние, образуя конденсатную влагу.

Появление влаги в структуре стены сопровождается рядом негативных факторов:

  • Теплопроводность отсыревшей стены возрастает в несколько раз. Это будет означать, что теплообмен между обогреваемой комнатой и улицей интенсифицируется, в доме всегда будет холодно.
  • В холодное время года происходит периодическое замерзание конденсатной влаги в стене с последующим оттаиванием. Цикличность замерзаний разрушающе действует на структуру строительного материала, снижая срок безаварийной эксплуатации здания.

На рисунке ниже схематично отображено преобразование парообразной влаги в жидкое состояние (использован голубой цвет), когда ТР попадает внутрь стенки жилища.


Методы расчета ТР

На вопрос, что такое точка росы, дан ответ в Своде Правил СП 50.13330.2012, регламентирующем вопросы тепловой защиты зданий. В п. Б.24 понятие ТР трактуют как температуру начала образования конденсатной влаги в воздухе с конкретными параметрами температуры и относительной влажности.

Величину ТР указывают в градусах Ц! Следует учитывать, что значение ТР никогда не может превышать фактический температурный параметр воздуха, для которого ТР определяется. Лишь в случае 100%-ной относительной влажности ТР совпадет с температурой воздуха.

В соответствии с определением ТР температура выпадения конденсатной влаги зависит от значений двух параметров:

  • от температуры воздуха;
  • от относительной влажности окружающего воздуха.

Например, для воздушных масс влажностью 40% и температурой 10 °C показатель ТР составит минус 2,9 °C. При влажности этого же объема в пределах 80% ТР уже достигнет плюс 6,7 °C. Для 100%-й влажности значения ТР и t воздуха совпадают = 10,0 °C.

При обустройстве тепловой защиты очень важно найти место, где может быть точка росы, чтобы не допустить образование конденсатной влаги в месте, нежелательном для обеспечения эффективной теплозащиты. Визуально определить положение ТР как место начального выпадения конденсата практически невозможно. Для показателя точка росы определение выполняется несколькими методами.

Расчетный метод

Очень удобна следующая формула для расчета ТР в плюсовом диапазоне температур до 60 °C:

T Р = b*f(T,Rh)/(a-f(T,Rh) , где

  • T Р – температура начала конденсирования, то есть точка росы в стене, утеплителе либо окружающем воздухе;
  • f(T,Rh) = a*T/(b+T) + ln(Rh);
  • ln – натуральный логарифм;
  • а=17,27;
  • b=237,7;
  • Т – температура воздуха в °C;
  • Rh – относительная влажность, указанная в объемных долях (от 0,01 до 1,00).

Данная формула работает с погрешностью ±0,4 градуса Цельсия.

Существуют более простые формулы, работающие с погрешностью в пределах ±1,0 град. Ц, к примеру, Т р ≈Т – (1-RH)/0,05.

Этой формулой можно воспользоваться, чтобы посчитать показатель относительной влажности через уже известную температуру ТР: RH≈1-0,05(Т- Т р).

Табличный метод

В специальных многочисленных таблицах на основе лабораторных измерений указывают значения ТР в зависимости от показателей относительной влажности воздуха и его температуры. Довольно подробно определяет параметр точка росы таблица справочного приложения Р Свода Правил СП 23-101-2004 «Проектирование тепловой защиты зданий». На рис. ниже приведена аналогичная таблица точки росы, полностью соответствующая параметрам из ГОСТ и СП.

Таблица для определения точки росы

Темпера-
тура
воздуха, (°C)
Температура точки росы (°C) при относительной влажности (%)
30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95%
30 10,5 12,9 14,9 16,8 18,4 20 21,4 22,7 23,9 25,1 26,2 27,2 28,2 29,1
29 9,7 12 14 15,9 17,5 19 20,4 21,7 23 24,1 25,2 26,2 27,2 28,1
28 8,8 11,1 13,1 15 16,6 18,1 19,5 20,8 22 23,2 24,2 25,2 26,2 27,1
27 8 10,2 12,2 14,1 15,7 17,2 18,6 19,9 21,1 22,2 23,3 24,3 25,2 26,1
26 7,1 9,4 11,4 13,2 14,8 16,3 17,6 18,9 20,1 21,2 22,3 23,3 24,2 25,1
25 6,2 8,5 10,5 12,2 13,9 15,3 16,7 18 19,1 20,3 21,3 22,3 23,2 24,1
24 5,4 7,6 9,6 11,3 12,9 14,4 15,8 17 18,2 19,3 20,3 21,3 22,3 23,1
23 4,5 6,7 8,7 10,4 12 13,5 14,8 16,1 17,2 18,3 19,4 20,3 21,3 22,2
22 3,6 5,9 7,8 9,5 11,1 12,5 13,9 15,1 16,3 17,4 18,4 19,4 20,3 21,1
21 2,8 5 6,9 8,6 10,2 11,6 12,9 14,2 15,3 16,4 17,4 18,4 19,3 20,2
20 1,9 4,1 6 7,7 9,3 10,7 12 13,2 14,4 15,4 16,4 17,4 18,3 19,2
19 1 3,2 5,1 6,8 8,3 9,8 11,1 12,3 13,4 14,5 15,5 16,4 17,3 18,2
18 0,2 2,3 4,2 5,9 7,4 8,8 10,1 11,3 12,5 13,5 14,5 15,4 16,3 17,2
17 -0,6 1,4 3,3 5 6,5 7,9 9,2 10,4 11,5 12,5 13,5 14,5 15,3 16,2
16 -1,4 0,5 2,4 4,1 5,6 7 8,2 9,4 10,5 11,6 12,6 13,5 14,4 15,2
15 -2,2 -0,3 1,5 3,2 4,7 6,1 7,3 8,5 9,6 10,6 11,6 12,5 13,4 14,2
14 -2,9 -1 0,6 2,3 3,7 5,1 6,4 7,5 8,6 9,6 10,6 11,5 12,4 13,2
13 -3,7 -1,9 -0,1 1,3 2,8 4,2 5,5 6,6 7,7 8,7 9,6 10,5 11,4 12,2
12 -4,5 -2,6 -1 0,4 1,9 3,2 4,5 5,7 6,7 7,7 8,7 9,6 10,4 11,2
11 -5,2 -3,4 -1,8 -0,4 1 2,3 3,5 4,7 5,8 6,7 7,7 8,6 9,4 10,2
10 -6 -4,2 -2,6 -1,2 0,1 1,4 2,6 3,7 4,8 5,8 6,7 7,6 8,4 9,2
* для промежуточных показателей, не указанных в таблице, определяется средняя величина

Использование бытовых психрометров

Психрометры, точнее, гигрометры психрометрические предназначены для измерений температуры воздуха и его относительной влажности. Современный гигрометр можно использовать как прибор для определения точки росы, так как на его корпус нанесено изображение психрометрической таблицы.

Используя показания обоих термометров прибора, по таблице определяется ТР. На рисунке ниже показаны модели современных бытовых психрометров, оснащенные психрометрическими таблицами, способствующими тому, как определить точку росы.


Портативные электронные термогигрометры

Точка росы в строительстве при теплотехническом обследовании помещений определяется при помощи портативных термогигрометров с дисплеями, оснащенными индикацией значений температуры окружающего воздуха, его влажности и параметра ТР.


Показания тепловизоров

Вычисление ТР не требуется производить, если пользоваться отдельными моделями тепловизоров строительного предназначения, имеющих функцию расчета ТР и отображающих поверхности с температурой ниже ТР при тепловизионной съемке. При заданных параметрах воздуха на компьютере можно обработать тепловизионные данные и показать на термограммах все участки, рискующие попасть в зону конденсации при утеплении стены или потолка.


Варианты жилища

Параметр ТР является своеобразной границей температур, в которой происходит встреча внутреннего тепла и внешнего холода. В стеновых ограждающих конструкциях теплый воздух, диффундирующий в зимние холодные месяцы из отапливаемой комнаты на морозную улицу, переохлаждается.

Паровая фаза воды переходит во влажное состояние, осаждаясь на любой поверхности, имеющей температуру ниже ТР. Причиной возникновения конденсата является не только материал стены (деревянный дом, кирпичный или газобетонный), но и способ обустройства тепловой защиты здания, определяющий, в какую сторону смещается ТР.

Местоположение ТР зависит от следующих факторов:

  • показателей влажности внутри помещения и на улице;
  • показателей температуры воздуха внутри помещения и на улице;
  • толщины стены и утепляющего слоя;
  • места, где размещен утепляющий материал.

В зависимости от указанных факторов ТР может находиться не только на поверхности стены, но и в толще стены либо утепляющего материала. Варианты расположения ТР в системе «стена плюс утеплитель» предусматривают размещение утеплителя внутри помещения либо на наружной стороне ограждающей стенки (см. рис. ниже).


Стена без утепления

Местоположение ТР приходится на толщу стены и способно смещаться в сторону улицы либо помещения в зависимости от изменяющихся параметров температур и влажности.

В любом случае, находится точка росы в газобетоне или в кирпичной стене, конденсат образуется сравнительно далеко от внутренней поверхности. Конденсатная влага скапливается в материале стены, в сильные морозы она замерзает. При потеплении влага оттаивает и испаряется наружу, в атмосферу.

Возможны три варианта размещения ТР в стене:

  • найденный расчетным или табличным способом показатель ТР попал между геометрическим центром толщины стенки и внешней поверхностью – внутренняя стенка осталась сухой;
  • ТР попадает между геометрическим центром стенки и внутренней поверхностью помещения – стены комнаты при резком похолодании могут намокнуть;
  • ТР точно попала на координату внутренней поверхности – всю зиму стена будет отсыревшей.

Потери тепла при неутепленной стене достигают 80%. Негативным моментом возникновения ТР в стене является постепенное разрушение стеновой конструкции.

Однородные по своей конструкции стены из кирпича, газобетона, керамзитных блоков и пр. имеют ТР в зимнее время внутри толщи материала. Многократные циклы замораживания/оттаивания ухудшают прочностные свойства стройматериалов и снижают прочность всей стеновой конструкции. Поэтому стены монолитной конструкции однородного состава необходимо утеплять теплоизолирующими материалами.

Утепление с внутренней стороны помещения

Для местоположения ТР возможны следующие варианты:

  • если точка росы в утеплителе, то утеплитель будет мокрым весь морозный период;
  • если структура материала утеплителя не допускает конденсации влаги внутри утепляющего слоя (пенополистирол и др.), то конденсат выпадет на границе внутренней стены и утепляющей полистирольной плиты. Отделка стены начнет мокнуть, что спровоцирует образование сырых пятен и плесени;
  • материал стены находится в зоне минусовых температур и подвергается негативным воздействиям температурных перепадов.

Утепление с наружной стороны здания

ТР выведена во внешний теплоизолирующий слой. Возможность образования конденсата в комнате исключена, стены будут сухие.

Видео: точка росы в стене

Теория и практика показывают, что предпочтительнее обустраивать теплозащиту здания с его внешней стороны. Тогда больше шансов на то, что ТР окажется в зоне, не допускающей конденсации влаги внутри помещения.