Электрические величины и единицы их измерения. Измерение величин

В науке и технике используются единицы измерения физических величин, образующие определенные системы. В основу совокупности единиц, устанавливаемой стандартом для обязательного применения, положены единицы Международной системы (СИ). В теоретических разделах физики широко используются единицы систем СГС: СГСЭ, СГСМ и симметричной Гауссовой системы СГС. Определенное применение находят также единицы технической системы МКГСС и некоторые внесистемные единицы.

Международная система (СИ) построена на 6 основных единицах (метр, килограмм, секунда, кельвин, ампер, кандела) и 2 дополнительных (радиан, стерадиан). В окончательной редакции проекта стандарта “Единицы физических величин” приведены: единицы системы СИ; единицы, допускаемые к применению наравне с единицами СИ, например: тонна, минута, час, градус Цельсия, градус, минута, секунда, литр, киловатт–час, оборот в секунду, оборот в минуту; единицы системы СГС и другие единицы, применяемые в теоретических разделах физики и астрономии: световой год, парсек, барн, электронвольт; единицы, временно допускаемые к применению такие, как: ангстрем, килограмм–сила, килограмм–сила–метр, килограмм–сила на квадратный сантиметр, миллиметр ртутного столба, лошадиная сила, калория, килокалория, рентген, кюри. Важнейшие из этих единиц и соотношения между ними приведены в табл.П1.

Сокращенные обозначения единиц, приведенные в таблицах, применяются только после числового значения величины или в заголовках граф таблиц. Нельзя применять сокращенные обозначения вместо полных наименований единиц в тексте без числового значения величин. При использовании как русских, так и международных обозначений единиц используется прямой шрифт; обозначения (сокращенные) единиц, названия которых даны по именам ученых (ньютон, паскаль, ватт и т.д.) следует писать с заглавной буквы (Н, Па, Вт); в обозначениях единиц точку как знак сокращения не применяют. Обозначения единиц, входящих в произведение, разделяются точками как знаками умножения; в качестве знака деления применяют обычно косую черту; если в знаменатель входит произведение единиц, то оно заключается в скобки.



Для образования кратных и дольных единиц используются десятичные приставки (см. табл. П2). Особенно рекомендуется применение приставок, представляющих собой степень числа 10 с показателем, кратным трем. Целесообразно использовать дольные и кратные единицы, образованные от единиц СИ и приводящие к числовым значениям, лежащим между 0,1 и 1000 (например: 17 000 Па следует записать как 17 кПа).

Не допускается присоединять две или более приставок к одной единице (например: 10 –9 м следует записать как 1 нм). Для образования единиц массы приставку присоединяют к основному наименованию “грамм” (например: 10 –6 кг= =10 –3 г=1 мг). Если сложное наименование исходной единицы представляет собой произведение или дробь, то приставку присоединяют к наименованию первой единицы (например кН∙м). В необходимых случаях допускается в знаменателе применять дольные единицы длины, площади и объема (например В/см).

В табл.П3 приведены основные физические и астрономические постоянные.

Таблица П1

ЕДИНИЦЫ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ ВЕЛИЧИН В СИСТЕМЕ СИ

И ИХ СООТНОШЕНИЕ С ДРУГИМИ ЕДИНИЦАМИ

Наименование величин Единицы измерения Сокращенное обозначение Размер Коэффициент для приведения к единицам СИ
СГС МКГСС и внесистемные единицы
Основные единицы
Длина метр м 1 см=10 –2 м 1 Å=10 –10 м 1 св.год=9,46×10 15 м
Масса килогамм кг 1г=10 –3 кг
Время секунда с 1 ч=3600 с 1 мин=60 с
Температура кельвин К 1 0 С=1 К
Сила тока ампер А 1 СГСЭ I = =1/3×10 –9 А 1 СГСМ I =10 А
Сила света кандела кд
Дополнительные единицы
Плоский угол радиан рад 1 0 =p/180 рад 1¢=p/108×10 –2 рад 1²=p/648×10 –3 рад
Телесный угол стерадиан ср Полный телесный угол=4p ср
Производные единицы
Частота герц Гц с –1

Продолжение табл.П1

Угловая скорость радиан в секунду рад/с с –1 1 об/с=2p рад/с 1об/мин= =0,105 рад/с
Объем кубический метр м 3 м 3 1см 2 =10 –6 м 3 1 л=10 –3 м 3
Скорость метр в секунду м/с м×с –1 1см/с=10 –2 м/с 1км/ч=0,278 м/с
Плотность килограмм на куби-ческий метр кг/м 3 кг×м –3 1г/см 3 = =10 3 кг/м 3
Сила ньютон Н кг×м×с –2 1 дин=10 –5 Н 1 кг=9,81Н
Работа, энергия, количество тепла джоуль Дж (Н×м) кг×м 2 ×с –2 1 эрг=10 –7 Дж 1 кгс×м=9,81 Дж 1 эВ=1,6×10 –19 Дж 1 кВт×ч=3,6×10 6 Дж 1 кал=4,19 Дж 1 ккал=4,19×10 3 Дж
Мощность ватт Вт (Дж/с) кг×м 2 ×с –3 1эрг/с=10 –7 Вт 1л.с.=735Вт
Давление паскаль Па (Н/м 2) кг∙м –1 ∙с –2 1дин/см 2 =0,1Па 1 ат=1 кгс/см 2 = =0,981∙10 5 Па 1мм.рт.ст.=133 Па 1атм= =760 мм.рт.ст.= =1,013∙10 5 Па
Момент силы ньютон–метр Н∙м кгм 2 ×с –2 1 дин×см= =10 –7 Н×м 1 кгс×м=9,81 Н×м
Момент инерции килограмм–метр в квадрате кг×м 2 кг×м 2 1 г×см 2 = =10 –7 кг×м 2
Динамическая вязкость паскаль–секунда Па×с кг×м –1 ×с –1 1П/пуаз/= =0,1Па×с

Продолжение табл.П1

Кинематическая вязкость квадратный метр на секунду м 2 /с м 2 ×с –1 1Ст/стокс/= =10 –4 м 2 /с
Теплоемкость системы джоуль на кельвин Дж/К кг×м 2 х х с –2 ×К –1 1 кал/ 0 С=4,19 Дж/К
Удельная теплоемкость джоуль на килограмм–кельвин Дж/ (кг×К) м 2 ×с –2 ×К –1 1 ккал/(кг× 0 С)= =4,19×10 3 Дж/(кг×К)
Электрический заряд кулон Кл А×с 1СГСЭ q = =1/3×10 –9 Кл 1СГСМ q = =10 Кл
Потенциал, электрическое напряжение вольт В (Вт/А) кг×м 2 х х с –3 ×А –1 1СГСЭ u = =300 В 1СГСМ u = =10 –8 В
Напряженность электрического поля вольт на метр В/м кг×м х х с –3 ×А –1 1 СГСЭ Е = =3×10 4 В/м
Электрическое смещение (электрическая индукция) кулон на квадратный метр Кл/м 2 м –2 ×с×А 1СГСЭ D = =1/12p х х 10 –5 Кл/м 2
Электрическое сопротивление ом Ом (В/А) кг×м 2 ×с –3 х х А –2 1СГСЭ R = 9×10 11 Ом 1СГСМ R = 10 –9 Ом
Электрическая емкость фарад Ф (Кл/В) кг –1 ×м –2 х с 4 ×А 2 1СГСЭ С = 1 см= =1/9×10 –11 Ф

Окончание табл.П1

Магнитный поток вебер Вб (В×с) кг×м 2 ×с –2 х х А –1 1СГСМ ф = =1 Мкс (максвел) = =10 –8 Вб
Магнитная индукция тесла Тл (Вб/ м 2) кг×с –2 ×А –1 1СГСМ В = =1 Гс(гаусс)= =10 –4 Тл
Напряженность магнитного поля ампер на метр А/м м –1 ×А 1СГСМ Н = =1Э(эрстед)= =1/4p×10 3 А/м
Магнитодвижущая сила ампер А А 1СГСМ Fm
Индуктивность генри Гн (Вб/А) кг×м 2 х х с –2 ×А –2 1СГСМ L = 1 см= =10 –9 Гн
Световой поток люмен лм кд
Яркость кандела на квадратный метр кд/м 2 м –2 ×кд
Освещенность люкс лк м –2 ×кд

Объектами измерений являются свойства объективных реальностей (тел, веществ, явлений, процессов). Свойство -- это выражение какой-либо стороны вещи или явления. Каждая вещь обладает множеством свойств, в которых проявляется ее качество. Одни свойства существенны, другие несущественны. Изменение существенных свойств равнозначно изменению качественного состояния вещи или явления.

Технологическая деятельность человека связана с измерением различных физических величин.

Физическая величина - это характеристика одного из свойств физического объекта (явления или процесса), общая в качественном отношении многим физическим объектам, но в количественном отношении индивидуальная для каждого объекта.

Значение физической величины -- это оценка ее величины в виде некоторого числа принятых для нее единиц или числа по принятой для нее шкале. Например, 120 мм -- значение линейной величины; 75 кг -- значение массы тела, НВ190 -- число твердости по Бринеллю.

Различают истинное значение физической величины, которое идеальным образом отражает в качественном и количественном отношении свойства измеряемого объекта, и действительное, найденное экспериментально, но которое достаточно близко к истинному значению физической величины и может быть использовано вместо действительного.

Измерением физической величины называют совокупность операций, выполняемых с помощью технического средства, хранящего единицу, или воспроизводящую шкалу физической величины, заключающихся в сравнении (в явном или неявном виде) измеряемой величины с ее единицей или шкалой с целью получения значения этой величины в форме, наиболее удобной для использования.

В теории измерений принято, в основном, пять типов шкал: наименования, порядка, интервалов, отношений и абсолютная.

Шкалы наименований характеризуются только отношением эквивалентности. По своей сути она является качественной, не содержит нуля и единицы измерения. Примером такой шкалы является оценка цвета по наименованиям (атласы цветов). Так как каждый цвет имеет множество вариаций, то такое сравнение может выполнить только опытный эксперт, обладающий соответствующими зрительными возможностями.

Шкалы порядка характеризуются отношением эквивалентности и порядка. Для практического использования такой шкалы необходимо установить ряд эталонов. Классификация объектов осуществляется сравнением интенсивности оцениваемого свойства с его эталонным значением. К шкалам порядка относятся, например, шкала землетрясений, шкала силы ветра, шкала твердости тел и т. п.

Шкала разностей отличается от шкалы порядка тем, что кроме отношений эквивалентности и порядка добавляется эквивалентность интервалов (разностей) между различными количественными проявлениями свойства. Она имеет условные нулевые значения, а величина интервалов устанавливается по согласованию. Характерным примером такой шкалы является шкала интервалов времени. Интервалы времени можно суммировать (вычитать).

Шкалы отношений описывают свойства, к которым применимы отношения эквивалентности, порядка и суммирования, а, следовательно, вычитания и умножения. Эти шкалы имеют естественное нулевое значение, а единицы измерений устанавливаются по согласованию. Для шкалы отношений достаточно одного эталона, чтобы распределить все исследуемые объекты по интенсивности измеряемого свойства. Примером шкалы отношений является шкала массы. Масса двух объектов равна сумме масс каждого из них.

Абсолютные шкалы обладают всеми признаками шкал отношений, но дополнительно в них существует естественное однозначное определение единицы измерения. Такие шкалы соответствуют относительным величинам (отношениям одноименных физических величин, описываемых шкалами отношений). Среди абсолютных шкал выделяются абсолютные шкалы, значения которых находятся в пределах от 0 до 1. Такой величиной является, например, коэффициент полезного действия.

Большинство свойств, которые рассматривают в метрологии, описывается одномерными шкалами. Однако имеются свойства, описание которых может быть выполнено только с применением многомерных шкал. Например, трехмерные шкалы цвета в колориметрии.

Практическая реализация шкал конкретных свойств достигается путем стандартизации единиц измерений, шкал и (или) способов и условий их однозначного воспроизведения. Понятие неизменной для любых точек шкалы единицы измерений имеет смысл только для шкал отношений и интервалов (разностей). В шкалах порядка можно говорите только о числах, приписанных конкретным проявлениям свойства. Говорить о том, что такие числа отличаются в такое-то число раз или на столько-то процентов, нельзя. Для шкал отношений и разностей иногда недостаточно установить только единицу измерений. Так, даже для таких величин, как время, температура, сила света (и другие световые величины), которым в Международной системе единиц (SI) соответствуют основные единицы -- секунда, Кельвин и кандела, практические системы измерений опираются также на специальные шкалы. Кроме того, сами единицы SI в ряде случаев базируются на фундаментальных физических константах.

В этой связи можно выделить три вида физических величин, измерение которых осуществляется по различным правилам.

К первому виду физических величин относятся величины, на множестве размеров которых определены лишь отношения порядка и эквивалентности. Это отношения типа «мягче», «тверже», «теплее», «холоднее» и т. д.

К величинам такого рода относятся, например, твердость, определяемая как способность тела оказывать сопротивление проникновению в него другого тела; температура как степень нагретости тела и т. п.

Существование таких отношений устанавливается теоретически или экспериментально с помощью специальных средств сравнения, а также на основе наблюдений за результатами воздействия физической величины на какие-либо объекты.

Для второго вида физических величин отношение порядка и эквивалентности имеет место как между размерами, так и между разностями в парах их размеров. Так, разности интервалов времени считаются равными, если расстояния между соответствующими отметками равны.

Третий вид составляют аддитивные физические величины.

Аддитивными физическими величинами называются величины, на множестве размеров которых определены не только отношения порядка и эквивалентности, но операции сложения и вычитания. К таким величинам относятся длина, масса, сила тока и т. п. Их можно измерять по частям, а также воспроизводить с помощью многозначной меры, основанной на суммировании отдельных мер. Например, сумма масс двух тел -- это масса такого тела, которое уравновешивает на равноплечих весах первые два.

По своему назначению и предъявляемым требованиям различают следующие виды эталонов.

Первичный эталон – обеспечивает воспроизведение и хранение единицы физической величины с наивысшей в стране (по сравнению с другими эталонами той же величины) точностью. Первичные эталоны – уникальные измерительные комплексы, созданные с учетом новейших достижений науки и техники и обеспечивающие единства измерений в стране.

Специальный эталон - обеспечивает воспроизведение единицы физической величины в особых условиях, в которых прямая передача размера единицы от первичного эталона с требуемой точностью не осуществима, и служит для этих условий первичным эталоном.

Первичный или специальный эталон, официально утвержденный в качестве исходного для страны, называется государственным. Государственные эталоны утверждаются Госстандартом, и на каждый их них утверждается государственный стандарт. Государственные эталоны создаются, хранятся и применяются центральными научными метрологическими институтами страны.

Вторичный эталон – хранит размеры единицы физической величины, полученной путем сличения с первичным эталоном соответствующей физической величины. Вторичные эталоны относятся к подчиненным средствам хранения единиц и передачи их размеров при проведении поверочных работ и обеспечивают сохранность и наименьший износ государственных первичных эталонов.

По своему метрологическому назначению вторичные эталоны подразделяются на эталоны-копии, эталоны сравнения, эталоны-свидетели и рабочие эталоны.

Эталон-копия – предназначен для передачи размера единицы физической величины рабочим эталоном при большом объеме поверочных работ. Он является копией государственного первичного эталона только по метрологическому назначению, но не всегда является физической копией.

Эталон сравнения – применяется для сличения эталонов, которые по тем или иным причинам не могут непосредственно сличаться друг с другом.

Эталон-свидетель – предназначен для проверки сохранности и неизменности государственного эталона и замены его в случае порчи или утраты. Поскольку большинство государственных эталонов создано на основе использования наиболее устойчивых физических явлений и являются по этому неразрушаемыми, в настоящее время только эталон килограмма имеет эталон-свидетеля.

Рабочий эталон – применяется для передачи размера единицы физической величины рабочим средством измерения. Это самый распространенный вид эталонов, которые используются для проведения поверочных работ территориальными и ведомственными метрологическими службами. Рабочие эталоны подразделяются на разряды, определяющие порядок их соподчинения в соответствии с поверочной схемой.

Эталоны основных единиц СИ.

Эталон единицы времени . Единицу времени – секунду – долгое время определяли как 1/86400 часть средних солнечных суток. Позднее обноружили, что вращение Земли вокруг соей оси происходит неравномерно. Тогда в основу определения единицы времени положили период вращения Земли вокруг Солнца – тропический год, т.е. интервал времени между двумя весенними равноденствиями, следующими одно за другим. Размер секунды был определен как 1/31556925,9747 часть тропического года. Это позволило почти в 1000 раз повысить точность определения единицы времени. Однако в 1967 году 13-я Генеральная конференция по мерам и весам приняла новое определение секунды как интервала времени, в течении которого совершается 9192631770 колебаний, соответствующих резонансной частоте энергетического перехода между уровнями сверхтонкой структуры основного состояния атома цезия-133 при отсутствии возмущения внешними полями. Данное определение реализуется с помощью цезиевых реперов частоты.

В 1972 году осуществлен переход на систему всемирного координированного времени. Начиная с 1997 года, государственный первичный контроль и государственная поверочная схема для средств измерения времени и частоты определяются правилами межгосударственной стандартизации ПМГ18-96 «Межгосударственная поверочная схема для средств измерения времени и частоты».

Государственный первичный эталон единицы времени, состоящий из комплекса измерительных средств, обеспечивает воспроизведение единиц времени со средним квадратическим отклонением результата измерений, не превышающим 1*10 -14 за три месяца.

Эталон единицы длины. В1889 году метр был принят равным расстоянию между двумя штрихами, нанесенными на металлическом стержне Х-образного поперечного сечения. Хотя международный и национальные эталоны метра были изготовлены из сплава платины и иридия, отличающегося значительной твердостью и большим сопротивлением окислению, однако не было полной уверенности в том, что длина эталона с течением времени не изменится. Кроме того, погрешность сличения между собой платино-иридиевых штриховых метров составляет + 1,1*10 -7 м (+0,11 мкм), а так как штрихи имеют значительную ширину, существенно повысить точность этого сличения нельзя.

После изучения спектральных линий ряда элементов было найдено, что наибольшую точность воспроизведения единицы длины обеспечивает оранжевая линия изотопа криптона-86. В 1960 году 11-я Генеральная конференция по мерам и весам приняла выражение размера метра в длинах этих волн как наиболее точное его значение.

Криптоновый метр позволил на порядок повысить точность воспроизведения единицы длины. Однако дальнейшее исследование позволило получить более точный эталон метра, основанный на длине волны в вакууме монохроматического излучения, генерируемого стабилизированным лазером. Разработка новых эталонных комплексов по воспроизведению метра привела к определению метра как расстояния, которое проходит свет в вакууме за 1/299792458 долю секунды. Данное определение метра закреплено законодательно в 1985 году.

Новый эталонный комплекс по воспроизведению метра кроме повышения точности измерения в необходимых случаях позволяет так же следить за постоянством платино-иридиевого эталона, ставшего теперь вторичным эталоном, используемым для передачи размера единицы рабочим эталоном.

Эталон единицы массы. При установлении метрической системы мер в качестве единицы времени приняли массу одного кубического дециметра чистой воды при температуре ее наибольшей плотности (4 0 С).

В этот период были проведены точные определения массы известного объема воды путем последовательного взвешивания в воздухе и воде пустого бронзового цилиндра, размеры которого были тщательно определены.

Изготовленный на основе этих взвешиваний первый прототип килограмма представлял собой платиновую цилиндрическую гирю высотой 39 мм, равной ее диаметру. Как и прототип метра, он был передан на хранение в Национальный архив Франции. В 19 веке повторно осуществили несколько тщательных измерений массы одного кубического дециметра чистой воды при температуре 4 0 С. При этом было установлено, что эта масса немного (приблизительно на 0, 028г) меньше прототипа килограмма Архива. Для того, чтобы при дальнейших, более точных, взвешиваниях не менять значение исходной единицы массы, Международной комиссией по прототипам метрической системы в 1872г. было решено за единицу массы принять массу прототипа килограмма Архива.

При изготовлении платино-иридиевых эталонов килограмма за международной прототип был принят тот, масса которого меньше всего отличалась от массы прототипа килограмма Архива.

В связи с принятием условного прототипа единицы массы литр оказался не равным кубическому дециметру. Значение этого отклонения (1л=1, 000028 дм 3) соответствует разности между массой международного прототипа килограмма и массой кубического дециметра воды. В 1964 году 12-я Генеральная конференция по мерам и весам приняла решение о приравнивании объема 1 л к 1дм 3 .

Следует отметить, что в момент установления метрической системы мер не было четкого разграничения понятий массы и веса, поэтому международный прототип килограмма считался эталоном единицы веса. Однако уже при утверждении международного прототипа килограмма на 1-й Генеральной конференции по мерам и весам в 1889 году килограмм был утвержден в качестве прототипа массы.

Четкое разграничение килограмма как единицы массы и килограмма как единицы силы было дано в решениях 3-й Генеральной конференции по мерам и весам (1901г).

Государственный первичный эталон и поверочная схема для средств изменения массы определяется ГОСТ 8.021 – 84. Государственный эталон состоит из комплекса мер и измерительных средств:

· национального прототипа килограмма – копии № 12 международного прототипа килограмма, представляющего собой гирю из платино-иридиевого сплава и предназначенного для передачи размера единицы массы гире R1;

· национального прототипа килограмма – копия № 26 международного прототипа килограмма, представляющего собой гирю из платино-иридиевого сплава и предназначенного для проверки неизменности размера единицы массы, воспроизводимый национальным прототипом килограмма – копии № 12, и замены последнего в период его сличений в Международном бюро мер и весов;

· гири R1 и набора гирь, изготовленных из платино-иридиевого сплава и предназначенных для передачи размера единицы массы эталонам – копиям;

· эталонных весов.

Номинальное значение массы, воспроизводимое эталоном, составляет 1кг. Государственный первичный эталон обеспечивает воспроизведение единицы массы со средним квадратическим отклонением результата измерений при сличении с международным прототипом килограмма, не превышающим 2*10 -3 мг.

Эталонные весы, с помощью которых производится сличение эталона массы, с диапазоном взвешивания 2*10 -3 … 1кг имеют среднее квадратическое отклонение результата наблюдения на весах 5*10 -4 … 3*10 -2 мг.

Физические величины и их размерность

ФОРМИРОВАНИЕ У УЧАЩИХСЯ ПОНЯТИЙ О ФИЗИЧЕСКИХ ВЕЛИЧИНАХ И ЗАКОНАХ

Классификация физических величин

Единицы измерения физических величин. Системы единиц.

Проблемы формирования у учащихся физических понятий

Формирование у учащихся понятий о физических величинах методом фреймовых опор

Формирование у учащихся понятий о физических законах методом фреймовых опор

Физические величины и их размерность

Физической величиной называют свойство, общее в качественном отношении многим физическим объектам, но в количественном отношении индивидуальное для каждого объекта(Болсун, 1983)/

Совокупность ФВ связанных между собой зависимостями, называют системой физи­ческих величин. Система ФВ состоит из основных величин , которые условно приняты в каче­стве независимых, и из производных величин , которые выражаются через основные величины системы.

Производныефизическиевеличины - это физические величины, входящие в систему и определяемые через основные величины этой системы. Математическое соотношение (форму­ла), посредством которого интересующая нас производ­ная ФВ выражается в явном виде через другие величины системы и в котором проявляется непосредственная связь между ними, называется определяющим уравнением . Например, определяющим уравнением скорости служит соотношение

V = (1)

Опыт показывает, что система ФВ, охватывающая все разделы физики может быть построена на семи основных величинах: масса, время, длина, температура, сила света, количество вещества, сила электрического тока.

Учёные договорились обозначать основные ФВ символами: длину (расстояние) в любых уравнениях и любых системах символом L (с этой буквы начинается на английском и немецком языках слово длина), а время – символом T (с этой буквы начинается на английском языке слово время). То же самое относится и к размерностям массы (символ М), электрического тока (символ I), термодинамической температуры (символ Θ), количества вещества (символ

N), силы света (символ J). Эти символы называются размерностями длины и времени, массы и т.д., причем независимо от размера длины или времени. (Иногда эти символы называют логическими операторами, иногда – радика-лами, но чаще всего размерностями.) Таким образом, Размерность основной ФВ -это всего лишь символ ФВ в виде заглавной буквы латинского или греческого алфавита.
Так, например, размерность скорости – это символ скорости в виде двух букв LT −1 (согласно формуле (1)), где Т представляет собой размерность времени, а L - длины Эти символы обозначают ФВ времени и длины независимо от их конкретного размера (секунда, минута, час, метр, сантиметр и т. д.). Размерность силы - MLT −2 (согласно уравнению второго закона Ньютона F = ma) . У любой производной ФВ имеется размерность, так как имеется уравнение, определяющее эту величину. В физике имеется одна чрезвычайно полезная математическая процедура, называемая анализом размерностей или проверка формулы размерностью .

По поводу понятия “размерность“ до сих пор имеются два противоположных мнения Проф. Коган И. Ш., в статье Размерность физической величины (Коган,) приводит следующие аргументы по поводу этого спора.. Более ста лет продолжаются споры о физическом смысле размерностей. Два мнения – размерность относится к физической величине, и размерность относится к единице измерений – уже целый век делят учёных на два лагеря. Первую точку зрения отстаивал известный физик начала ХХ века А.Зоммерфельд. Вторую точку зрения отстаивал выдающийся физик М.Планк, который считал размерность физической величины некоторой условностью. Известный метролог Л.Сена (1988) придерживался той точки зрения, согласно которой понятие размерности относится вообще не к физической величине, а к ее единице измерений. Эта же точка зрения изложена и в популярном учебнике по физике И.Савельева (2005).

Однако это противостояние искусственно. Размерность физической величины и ее единица измерений – различные физические категории, и их не следует сравнивать. В этом кроется суть ответа, решающего эту проблему.

Можно сказать, что у физической величины размерность имеется постольку, поскольку имеется уравнение, определяющее эту величину. Пока нет уравнения, нет и размерности, хотя от этого физическая величина не перестает существовать объективно. В существовании же размерности у единицы измерений физической величины объективной необходимости нет.

Опять же, размерности физических величин для одних и тех же физических величин должны быть одинаковыми на любой планете в любой звездной системе. В то же время единицы измерений тех же величин могут оказаться там какими угодно и, конечно же, не похожими на наши земные.

Подобный взгляд на проблему говорит о том, что правы и А.Зоммерфельд, и М.Планк . Просто каждый из них имел в виду разное. А.Зоммерфельд имел в виду размерности физических величин, а М.Планк − единицы измерений . Противопоставляя их взгляды друг другу, метрологи безосновательно приравнивают размерности физических величин к их единицам измерений, тем самым искусственно противопоставляя точки зрения А.Зоммерфельда и М.Планка.

В настоящем пособии понятие «размерность», как и полагается, относится к ФВ и с единицами ФВ не идентифицируется.

Электрическим током (I) называется направленное движение электрических зарядов (ионов - в электролитах, электронов проводимости в металлах).
Необходимым условием для протекания электрического тока является замкнутость электрической цепи.

Электрический ток измеряется в амперах (А) .

Производными единицами измерения тока являются:
1 килоампер (кА) = 1000 А;
1 миллиампер (мА) 0,001 А;
1 микроампер (мкА) = 0,000001 А.

Человек начинает ощущать проходящий через его тело ток в 0,005 А. Ток больше 0,05 А опасен для жизни человека.

Электрическим напряжением (U) называется разность потенциалов между двумя точками электрического поля.

Единицей разности электрических потенциалов является вольт (В).
1 В = (1 Вт) : (1 А).

Производными единицами измерения напряжения являются:

1 киловольт (кВ) = 1000 В;
1 милливольт (мВ) = 0,001 В;
1 микровольт (мкВ) = 0,00000 1 В.

Сопротивлением участка электрической цепи называется величина, зависящая от материала проводника, его длины и поперечного сечения.

Электрическое сопротивление измеряется в омах (Ом).
1 Ом = (1 В) : (1 А).

Производными единицами измерения сопротивления являются:

1 килоОм (кОм) = 1000 Ом;
1 мегаОм (МОм) = 1 000 000 Ом;
1 миллиОм (мОм) = 0,001 Ом;
1 микроОм (мкОм) = 0,00000 1 Ом.

Электрическое сопротивление тела человека в зависимости от ряда условий колеблется от 2000 до 10 000 Ом.

Удельным электрическим сопротивлением (ρ) называется сопротивление проволоки длиной 1 м и сечением 1 мм2 при температуре 20 °С.

Величина, обратная удельному сопротивлению, называется удельной электрической проводимостью (γ).

Мощностью (Р) называется величина, характеризующая скорость, с которой происходит преобразование энергии, или скорость, с которой совершается работа.
Мощностью генератора называется величина, характеризующая скорость, с которой механическая или другая энергия преобразуется в генераторе в электрическую.
Мощностью потребителя называется величина, характеризующая скорость, с которой происходит преобразование электрической энергии в отдельных участках цепи в другие полезные виды энергии.

Системной единицей мощности в СИ является ватт (Вт). Он равен мощности, при которой за 1 секунду выполняется работа в 1 джоуль:

1Вт = 1Дж/1сек

Производными единицами измерения электрической мощности являются:

1 киловатт (кВт) = 1000 Вт;
1 мегаватт (МВт) = 1000 кВт = 1 000 000 Вт;
1 милливатт (мВт) = 0,001 Вт; о1i
1 лошадиная сила (л. с.) = 736 Вт = 0,736 кВт.

Единицами измерения электрической энергии являются:

1 ватт-секунда (Вт сек) = 1 Дж = (1 Н) (1 м);
1 киловатт-час (кВт ч) = 3,б 106 Вт сек.

Пример. Ток, потребляемый электродвигателем, присоединенным к сети 220 В, составлял 10 А в течение 15 минут. Определить энергию, потребленную двигателем.
Вт*сек, или, разделив эту величину на 1000 и 3600, получим энергию в киловатт-часах:

W = 1980000/(1000*3600) = 0,55кВт*ч

Таблица 1. Электрические величины и единицы