Изотопы 1 элемента различаются. Изотопы

Определенного элемента, имеющие одинаковый , но разные . Обладают ядрами с одинаковым числом и разл. числом , имеют одинаковое строение электронных оболочек и занимают одно и то же место в периодич. системе хим. элементов. Термин "изотопы" предложен в 1910 Ф. Содди для обозначения химически неразличимых разновидностей , отличающихся по своим физ. (прежде всего радиоактивным) св-вам. Стабильные изотопы впервые обнаружены в 1913 Дж. Томсоном с помощью разработанного им т. наз. метода парабол - прообраза совр. . Он установил, что у Ne имеется, по крайней мере, 2 разновидности с маc. ч. 20 и 22. Названиями и символами изотопов обычно служат названия и символы соответствующих хим. элементов; указывают сверху слева от символа. Напр., для обозначения прир. изотопов используют запись 35 Сl и 37 С1; иногда внизу слева указывают также элемента, т.е. пишут 35 17 Сl и 37 17 Cl. Только изотопы самого легкого элемента -водорода с маc. ч. 1, 2 и 3 имеют спец. названия и символы: (1 1 Н), (D, или 2 1 Н) и (Т, или 3 1 H) соответственно. Из-за большой разницы в массах поведение этих изотопов существенно различается (см. , ). Стабильные изотопы встречаются у всех четных и большинства нечетных элементов с [ 83. Число стабильных изотопов у элементов с четными номерами м. б. равно 10 (напр., у ); у элементов с нечетными номерами не более двух стабильных изотопов. Известно ок. 280 стабильных и более 2000 радиоактивных изотопов у 116 природных и искусственно полученных элементов. Для каждого элемента содержание отдельных изотопов в прир. смеси претерпевает небольшие колебания, к-рыми часто можно пренебречь. Более значит. колебания изотопного состава наблюдаются для метеоритов и др. небесных тел. Постоянство изотопного состава приводит к постоянству встречающихся на Земле элементов, представляющей собой среднее значение массы данного элемента, найденное с учетом распространенности изотопов в природе. Колебания изотопного состава легких элементов связаны, как правило, с изменением изотопного состава при разл. процессах, протекающих в природе ( , и т.п.). Для тяжелого элемента Рb колебания изотопного состава разных образцов объясняются разл. содержанием в , и др. источниках и - родоначальников естеств. . Различия св-в изотопов данного элемента наз. . Важной практич. задачей является получение из прир. смесей отдельных изотопов -

· Период полураспада · Массовое число · Цепная ядерная реакция

Терминология

История открытия изотопов

Первое доказательство того, что вещества, имеющие одинаковое химическое поведение, могут иметь различные физические свойства, было получено при исследовании радиоактивных превращений атомов тяжёлых элементов. В 1906-07 выяснилось, что продукт радиоактивного распада урана - ионий и продукт радиоактивного распада тория - радиоторий, имеют те же химические свойства, что и торий, но отличаются от него атомной массой и характеристиками радиоактивного распада. Было обнаружено позднее, что у всех трёх продуктов одинаковы оптические и рентгеновские спектры. Такие вещества, идентичные по химическим свойствам, но различные по массе атомов и некоторым физическим свойствам, по предложению английского учёного Ф. Содди , стали называть изотопами.

Изотопы в природе

Считается, что изотопный состав элементов на Земле одинаков во всех материалах. Некоторые физические процессы в природе приводят к нарушению изотопного состава элементов (природное фракционирование изотопов, характерное для лёгких элементов, а также изотопные сдвиги при распаде природных долгоживущих изотопов). Постепенное накопление в минералах ядер - продуктов распада некоторых долгоживущих нуклидов используется в ядерной геохронологии.

Применение изотопов человеком

В технологической деятельности люди научились изменять изотопный состав элементов для получения каких-либо специфических свойств материалов. Например, 235 U способен к цепной реакции деления тепловыми нейтронами и может использоваться в качестве топлива для ядерных реакторов или ядерного оружия . Однако в природном уране лишь 0,72 % этого нуклида, тогда как цепная реакция практически осуществима лишь при содержании 235 U не менее 3 %. В связи с близостью физико-химических свойств изотопов тяжёлых элементов, процедура изотопного обогащения урана является крайне сложной технологической задачей, которая доступна лишь десятку государств в мире. Во многих отраслях науки и техники (например, в радиоиммунном анализе) используются изотопные метки.

См. также

  • Изотопная геохимия

Нестабильные (менее суток): 8 C: Углерод-8, 9 C: Углерод-9, 10 C: Углерод-10, 11 C: Углерод-11

Стабильные: 12 C: Углерод-12, 13 C: Углерод-13

10-10 000 лет: 14 C: Углерод-14

Нестабильные (менее суток) : 15 C: Углерод-15, 16 C: Углерод-16, 17 C: Углерод-17, 18 C: Углерод-18, 19 C: Углерод-19, 20 C: Углерод-20, 21 C: Углерод-21, 22 C: Углерод-22

Содержание статьи

ИЗОТОПЫ –разновидности одного и того же химического элемента, близкие по своим физико-химическим свойствам, но имеющие разную атомную массу. Название «изотопы» было предложено в 1912 английским радиохимиком Фредериком Содди , который образовал его из двух греческих слов: isos – одинаковый и topos – место. Изотопы занимают одно и то же место в клетке периодической системы элементов Менделеева.

Атом любого химического элемента состоит из положительно заряженного ядра и окружающего его облака отрицательно заряженных электронов. Положение химического элемента в периодической системе Менделеева (его порядковый номер) определяется зарядом ядра его атомов. Изотопами называются поэтому разновидности одного и того же химического элемента, атомы которых имеют одинаковый заряд ядра (и, следовательно, практически одинаковые электронные оболочки), но отличаются значениями массы ядра. По образному выражению Ф.Содди, атомы изотопов одинаковы «снаружи», но различны «внутри».

В 1932 был открыт нейтрончастица, не имеющая заряда, с массой, близкой к массе ядра атома водорода – протона, и создана протонно-нейтронная модель ядра. В результате в науке установилось окончательное современное определение понятия изотопов: изотопы – это вещества, ядра атомов которых состоят из одинакового числа протонов и отличаются лишь числом нейтронов в ядре. Каждый изотоп принято обозначать набором символов , где X – символ химического элемента, Z – заряд ядра атома (число протонов), А – массовое число изотопа (общее число нуклонов – протонов и нейтронов в ядре, A = Z + N). Поскольку заряд ядра оказывается однозначно связанным с символом химического элемента, часто для сокращения используется просто обозначение A X.

Из всех известных нам изотопов только изотопы водорода имеют собственные названия. Так, изотопы 2 H и 3 H носят названия дейтерия и трития и получили обозначения соответственно D и T (изотоп 1 H называют иногда протием).

В природе встречаются как стабильные изотопы, так и нестабильные – радиоактивные, ядра атомов которых подвержены самопроизвольному превращению в другие ядра с испусканием различных частиц (или процессам так называемого радиоактивного распада). Сейчас известно около 270 стабильных изотопов, причем стабильные изотопы встречаются только у элементов с атомным номером Z Ј 83. Число нестабильных изотопов превышает 2000, подавляющее большинство их получено искусственным путем в результате осуществления различных ядерных реакций. Число радиоактивных изотопов у многих элементов очень велико и может превышать два десятка. Число стабильных изотопов существенно меньше, Некоторые химические элементы состоят лишь из одного стабильного изотопа (бериллий, фтор, натрий, алюминий, фосфор, марганец, золото и ряд других элементов). Наибольшее число стабильных изотопов – 10 обнаружено у олова, у железа, например, их – 4, у ртути – 7.

Открытие изотопов, историческая справка.

В 1808 английский ученый натуралист Джон Дальтон впервые ввел определение химического элемента как вещества, состоящего из атомов одного вида. В 1869 химиком Д.И.Менделеевым была открыт периодический закон химических элементов. Одна из трудностей в обосновании понятия элемента как вещества, занимающего определенное место в клетке периодической системы, заключалась в наблюдаемой на опыте нецелочисленности атомных весов элементов. В 1866 английский физик и химик – сэр Вильям Крукс выдвинул гипотезу, что каждый природный химический элемент представляет собой некоторую смесь веществ, одинаковых по своим свойствам, но имеющих разные атомные масс, однако в то время такое предположение не имело еще экспериментального подтверждения и поэтому прошло мало замеченным.

Важным шагом на пути к открытию изотопов стало обнаружение явления радиоактивности и сформулированная Эрнстом Резерфордом и Фредериком Содди гипотеза радиоактивного распада:радиоактивность есть не что иное, как распад атома на заряженную частицу и атом другого элемента, по своим химическим свойствам отличающийся от исходного. В результате возникло представление о радиоактивных рядах или радиоактивных семействах, в начале которых есть первый материнский элемент, являющийся радиоактивным, и в конце – последний стабильный элемент. Анализ цепочек превращений показал, что в их ходе в одной клеточке периодической системы могут оказываться одни и те же радиоактивные элементы, отличающиеся лишь атомными массами. Фактически это и означало введение понятия изотопов.

Независимое подтверждение существования стабильных изотопов химических элементов было затем получено в экспериментах Дж. Дж. Томсона и Астона в 1912–1920 с пучками положительно заряженных частиц (или так называемых каналовых лучей) , выходящих из разрядной трубки.

В 1919 Астон сконструировал прибор, названный масс-спектрографом (или масс-спектрометром). В качестве источника ионов по-прежнему использовалась разрядная трубка, однако Астон нашел способ, при котором последовательное отклонение пучка частиц в электрическом и магнитном полях приводило к фокусировке частиц с одинаковым значением отношения заряда к массе (независимо от их скорости) в одной и той же точке на экране. Наряду с Астоном масс-спектрометр несколько другой конструкции в те же годы был создан американцем Демпстером. В результате последующего использования и усовершенствования масс-спектрометров усилиями многих исследователей к 1935 году была составлена почти полная таблица изотопных составов всех известных к тому времени химических элементов.

Методы разделения изотопов.

Для изучения свойств изотопов и особенно для их применения в научных и прикладных целях требуется их получение в более или менее заметных количествах. В обычных масс-спектрометрах достигается практически полное разделение изотопов, однако количество их ничтожно мало. Поэтому усилия ученых и инженеров были направлены на поиски других возможных методов разделения изотопов. В первую очередь были освоены физико-химические методы разделения, основанные на различиях в таких свойствах изотопов одного итого же элемента, как скорости испарения, константы равновесия, скорости химических реакций и т.п. Наиболее эффективными среди них оказались методы ректификации и изотопного обмена, которые нашли широкое применение в промышленном производстве изотопов легких элементов: водорода, лития, бора, углерода, кислорода и азота.

Другую группу методов образуют так называемые молекулярно-кинетические методы: газовая диффузия, термодиффузия, масс-диффузия (диффузия в потоке пара), центрифугирование. Методы газовой диффузии, основанные на различной скорости диффузии изотопных компонентов в высокодисперсных пористых средах, были использованы в годы второй мировой войны при организации промышленного производства разделения изотопов урана в США в рамках так называемого Манхэттенского проекта по созданию атомной бомбы. Для получения необходимых количеств урана, обогащенного до 90% легким изотопом 235 U – главной «горючей» составляющей атомной бомбы, были построены заводы, занимавшие площади около четырех тысяч гектар. На создание атомного центра с заводами для получения обогащенного урана было ассигновано более 2-х млрд. долл. После войны в СССР были разработать и построены заводы по производству обогащенного урана для военных целей, также основанные на диффузионном методе разделения. В последние годы этот метод уступил место более эффективному и менее затратному методу центрифугирования. В этом методе эффект разделения изотопной смеси достигается за счет различного действия центробежных сил на компоненты изотопной смеси, заполняющей ротор центрифуги, который представляет собой тонкостенный и ограниченный сверху и снизу цилиндр, вращающийся с очень высокой скоростью в вакуумной камере. Сотни тысяч соединенных в каскады центрифуг, ротор каждой из которых совершает более тысячи оборотов в секунду, используются в настоящее время на современных разделительных производствах как в России, так и в других развитых странах мира. Центрифуги используются не только для получения обогащенного урана, необходимого для обеспечения работы ядерных реакторов атомных электростанций, но и для производства изотопов примерно тридцати химических элементов средней части периодической системы. Для разделения различных изотопов используются также установки электромагнитного разделения с мощными источниками ионов, в последние годы получили распространение также лазерные методы разделения.

Применение изотопов.

Разнообразные изотопы химических элементов находят широкое применение в научных исследованиях, в различных областях промышленности и сельского хозяйства, в ядерной энергетике, современной биологии и медицине, в исследованиях окружающей среды и других областях. В научных исследованиях (например, в химическом анализе) требуются, как правило, небольшие количества редких изотопов различных элементов, исчисляемые граммами и даже миллиграммами в год. Вместе с тем, для ряда изотопов, широко используемых в ядерной энергетике, медицине и других отраслях, потребность в их производстве может составлять многие килограммы и даже тонны. Так, в связи с использованием тяжелой воды D 2 O в ядерных реакторах ее общемировое производство к началу 1990-х прошлого века составляло около 5000 т в год. Входящий в состав тяжелой воды изотоп водорода дейтерий, концентрация которого в природной смеси водорода составляет всего 0,015%, наряду с тритием станет в будущем, по мнению ученых, основным компонентом топлива энергетических термоядерных реакторов, работающих на основе реакций ядерного синтеза. В этом случае потребность в производстве изотопов водорода окажется огромной.

В научных исследованиях стабильные и радиоактивные изотопы широко применяются в качестве изотопных индикаторов (меток) при изучении самых различных процессов, происходящих в природе.

В сельском хозяйстве изотопы («меченые» атомы) применяются, например, для изучения процессов фотосинтеза, усвояемости удобрений и для определения эффективности использования растениями азота, фосфора, калия, микроэлементов и др. веществ.

Изотопные технологии находят широкое применение в медицине. Так в США, согласно статистическим данным, проводится более 36 тыс. медицинских процедур в день и около 100 млн. лабораторных тестов с использованием изотопов. Наиболее распространены процедуры, связанные с компьютерной томографией. Изотоп углерода C 13 , обогащенный до 99% (природное содержание около 1%), активно используется в так называемом «диагностическом контроле дыхания». Суть теста очень проста. Обогащенный изотоп вводится в пищу пациента и после участия в процессе обмена веществ в различных органах тела выделяется в виде выдыхаемого пациентом углекислого газа СО 2 , который собирается и анализируется с помощью спектрометра. Различие в скоростях процессов, связанных с выделением различных количеств углекислого газа, помеченных изотопом С 13 , позволяют судить о состоянии различных органов пациента. В США число пациентов, которые будут проходить этот тест, оценивается в 5 млн. человек в год. Сейчас для производства высоко обогащенного изотопа С 13 в промышленных масштабах используются лазерные методы разделения.

Владимир Жданов

Изучая явление радиоактивности, ученые в первое десятилетие XX в. открыли большое количество радиоактивных веществ - около 40. Их было значительно больше, чем свободных мест в периодической системе элементов в промежутке между висмутом и ураном. Природа этих веществ вызывала споры. Одни исследователи считали их самостоятельными химическими элементами, но в таком случае оказывался неразрешимым вопрос об их размещении в таблице Менделеева. Другие вообще отказывали им в праве называться элементами в классическом понимании. В 1902 г. английский физик Д. Мартин назвал такие вещества радиоэлементами. По мере их изучения выяснилось, что некоторые радиоэлементы имеют совершенно одинаковые химические свойства, но различаются по величинам атомных масс. Это обстоятельство противоречило основным положениям периодического закона. Разрешил противоречие английский ученый Ф. Содди. В 1913 г. он назвал химически сходные радиоэлементы изотопами (от греческих слов, означающих «одинаковый» и «место»), т. е. занимающими одно и то же место в периодической системе. Радиоэлементы оказались изотопами естественных радиоактивных элементов. Все они объединяются в три радиоактивных семейства, родоначальниками которых являются изотопы тория и урана.

Изотопы кислорода. Изобары калия и аргона (изобары - атомы различных элементов с одинаковым массовым числом).

Число стабильных изотопов для четных и нечетных элементов.

Вскоре выяснилось, что и у остальных стабильных химических элементов тоже есть изотопы. Основная заслуга в их открытии принадлежит английскому физику Ф. Астону. Он обнаружил стабильные изотопы у многих элементов.

С современной точки зрения изотопы - это разновидности атомов химического элемента: у них разная атомная масса, но одинаковый заряд ядра.

Их ядра, таким образом, содержат одинаковое число протонов, но различное число нейтронов. Например, природные изотопы кислорода с Z = 8 содержат в ядрах соответственно 8, 9 и 10 нейтронов. Сумма чисел протонов и нейтронов в ядре изотопа называется массовым числом A. Следовательно, массовые числа указанных изотопов кислорода 16, 17 и 18. Ныне принято такое обозначение изотопов: слева внизу от символа элемента дается величина Z, слева вверху - величина A. Например: 16 8 O, 17 8 O, 18 8 O.

После открытия явления искусственной радиоактивности с помощью ядерных реакций было получено около 1800 искусственных радиоактивных изотопов для элементов с Z от 1 до 110. У подавляющего большинства искусственных радиоизотопов очень малые периоды полураспада, измеряемые секундами и долями секунд; лишь немногие имеют сравнительно большую продолжительность жизни (например, 10 Ве - 2,7 10 6 лет, 26 Al - 8 10 5 лет и т. д.).

Стабильные элементы представлены в природе примерно 280 изотопами. Однако некоторые из них оказались в слабой степени радиоактивными, с огромными периодами полураспада (например, 40 K, 87 Rb, 138 La, l47 Sm, 176 Lu, 187 Re). Продолжительность жизни этих изотопов столь велика, что позволяет рассматривать их как стабильные.

В мире стабильных изотопов еще немало проблем. Так, неясно, почему их количество у разных элементов столь сильно различается. Около 25% стабильных элементов (Be, F, Na, Al, P, Sc, Mn, Co, As, Y, Nb, Rh, I, Cs, Pt, Tb, Ho, Tu, Ta, Au) представлены в природе лишь одним видом атомов. Это так называемые элементы-одиночки. Интересно, что все они (кроме Be) имеют нечетные значения Z. И вообще для нечетных элементов число стабильных изотопов не превышает двух. Напротив, некоторые элементы с четными Z состоят из большого числа изотопов (например, Xe имеет 9, Sn - 10 стабильных изотопов).

Совокупность стабильных изотопов у данного элемента называют плеядой. Содержание их в плеяде нередко сильно колеблется. Интересно отметить, что больше всего содержание изотопов с величинами массовых чисел, кратными четырем (12 C, 16 O, 20 Ca и т. д.), хотя есть и исключения из этого правила.

Отрытие стабильных изотопов позволило разгадать многолетнюю загадку атомных масс - их отклонение от целых чисел, объясняющееся различным процентным содержанием стабильных изотопов элементов в плеяде.

В ядерной физике известно понятие «изобары». Изобарами называют изотопы различных элементов (т. е. с разными значениями Z), имеющие одинаковые массовые числа. Изучение изобаров способствовало установлению многих важных закономерностей поведения и свойств атомных ядер. Одну из таких закономерностей выражает правило, сформулированное советским химиком С. А. Щукаревым и иемецким физиком И. Маттаухом. Оно гласит: если лва изобара различаются по значениям Z на 1, то один из них обязательно будет радиоактивным. Классический пример пары изобаров - 40 18 Ar - 40 19 K. В ней изотоп калия радиоактивен. Правило Щукарева - Маттауха позволило объяснить, почему отсутствуют стабильные изотопы у элементов технеция (Z = 43) и прометия (Z = 61). Поскольку они имеют нечетные значения Z, то нельзя было для них ожидать более двух стабильных изотопов. Но оказалось, что изобары технеция и прометия, соответственно изотопы молибдена (Z = 42) и рутения (Z = 44), неодима (Z = 60) и самария (Z = 62), представлены в природе стабильными разновидностями атомов в большом диапазоне массовых чисел. Тем самым физические закономерности накладывают запрет на существование стабильных изотопов технеция и прометия. Вот почему эти элементы фактически не существуют в природе и их пришлось синтезировать искусственно.

Ученые уже давно пытаются разработать периодическую систему изотопов. Конечно, в её основе лежат другие принципы, нежели в основе периодической системы элементов. Но эти попытки пока не привели к удовлетворительным результатам. Правда, физики доказали, что последовательность заполнения протонных и нейтронных оболочек в атомных ядрах в принципе подобна построению электронных оболочек и подоболочек в атомах (см. Атом).

Электронные оболочки у изотопов данного элемента построены совершенно одинаково. Поэтому практически тождественны их химические и физические свойства. Только изотопы водорода (протий и дейтерий) и их соединения обнаруживают заметные различия в свойствах. Например, тяжелая вода (D 2 O) замерзает при +3,8, кипит при 101,4 °C, имеет плотность 1,1059 г/см 3 , не поддерживает жизни животных и растительных организмов. При электролизе воды на водород и кислород разлагаются преимущественно молекулы H 2 0, тогда как молекулы тяжелой воды остаются в электролизере.

Разделение изотопов других элементов - задача чрезвычайно сложная. Тем не менее во многих случаях необходимы изотопы отдельных элементов со значительно измененным по сравнению с природным содержанием. Например, при решении проблемы атомной энергии возникла необходимость разделения изотопов 235 U и 238 U. Для этой цели сначала был применен метод масс-спектрометрии, с помощью которого в 1944 г. в США были получены первые килограммы урана‑235. Однако этот метод оказался слишком дорогим и был заменен методом газовой диффузии, в котором использовался UF 6 . Сейчас существует несколько методов разделения изотопов, однако все они достаточно сложны и дороги. И всё‑таки проблема «разделения неразделимого» успешно решается.

Появилась новая научная дисциплина - химия изотопов. Она изучает поведение различных изотопов химических элементов в химических реакциях и процессы изотопного обмена. В результате этих процессов происходит перераспределение изотопов данного элемента между реагирующими веществами. Вот простейший пример: H 2 0 + HD = HD0 + H 2 (молекула воды обменивает атом протия на атом дейтерия). Развивается и геохимия изотопов. Она исследует колебания изотопного состава разных элементов в земной коре.

Широчайшее применение находят так называемые меченые атомы - искусственные радиоактивные изотопы стабильных элементов или стабильные изотопы. С помощью изотопных индикаторов - меченых атомов - изучают пути перемещения элементов в неживой и живой природе, характер распределения веществ и элементов в различных объектах. Изотопы применяются в ядерной технике: как материалы конструкций ядерных реакторов; в качестве ядерного горючего (изотопы тория, урана, плутония); в термоядерном синтезе (дейтерий, 6 Li, 3 He). Радиоактивные изотопы также широко используются в качестве источников излучений.

Установлено, что каждый химический элемент, находящийся в природе – это смесь изотопов (отсюда у них дробные атомные массы). Чтобы понять, чем отличаются изотопы один от другого, необходимо детально рассмотреть строение атома. Атом образует ядро и электронное облако. На массу атома влияют электроны, движущиеся с ошеломительной скоростью по орбиталям в электронном облаке, нейтроны и протоны, входящие в состав ядра.

Что такое изотопы

Изотопы – это разновидность атомов какого-либо химического элемента. Электронов и протонов в любом атоме всегда равное количество. Поскольку они обладают противоположными зарядами (электроны – отрицательным, а протоны – положительным), атом всегда нейтрален (эта элементарная частица не несет заряда, он равен у нее нулю). При потере или захвате электрона атом теряет нейтральность, становясь либо отрицательным, либо положительным ионом.
Нейтроны не имеют заряда, зато их количество в атомном ядре одного и того же элемента может быть разным. Это никак не сказывается на нейтральности атома, однако влияет на его массу и свойства. Например, в любом изотопе атома водорода есть по одному электрону и протону. А количество нейтронов разное. В протии имеется всего лишь 1 нейтрон, в дейтерии – 2 нейтрона и в тритии – 3 нейтрона. Эти три изотопа заметно отличаются друг от друга по свойствам.

Сравнение изотопов

Чем различаются изотопы? В них разное количество нейтронов, неодинаковая масса и различные свойства. Изотопы обладают идентичным строением электронных оболочек. Это значит, что они довольно близки по химическим свойствам. Поэтому им отведено в периодической системе одно место.
В природе обнаружены изотопы стабильные и радиоактивные (нестабильные). Ядра атомов радиоактивных изотопов способны самопроизвольно превращаться в другие ядра. В процессе радиоактивного распада они испускают различные частицы.
Большинство элементов имеет свыше двух десятков радиоактивных изотопов. К тому же радиоактивные изотопы искусственно синтезированы абсолютно для всех элементов. В естественной смеси изотопов их содержание незначительно колеблется.
Существование изотопов позволило понять, почему в отдельных случаях элементы с меньшей атомной массой обладают большим порядковым номером, чем элементы с большей атомной массой. Например, в паре аргон-калий аргон включает тяжелые изотопы, а калий – легкие изотопы. Поэтому масса аргона больше, чем калия.

ImGist определил, что отличие изотопов друг от друга заключается в следующем:

Они обладают разным числом нейтронов.
Изотопы имеют разную массу атомов.
Значение массы атомов ионов влияет на их полную энергию и свойства.