Ветро генератор из асинхронный двигателя своими руками. Может ли работать асинхронный двигатель как генератор — как его использовать в домашних условиях

Источники электропитания делят на синхронные и асинхронные в зависимости от типа генератора. В электротехнике, согласно законам физики, существует принцип обратимости энергии: электрические машины, которые могут преобразовывать электрическую энергию в механическую, также могут совершать обратные преобразования. Асинхронный генератор работает на данном принципе: он способен преобразовывать механическую энергию вращения ротора в электроток на обмотке статора. Применяется он на напряжения 220 и 380 В.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2016/09/generator-1-768x582..jpg 1024w, https://elquanta.ru/wp-content/uploads/2016/09/generator-1.jpg 1200w" sizes="(max-width: 600px) 100vw, 600px">

Вид асинхронного генератора

В генераторном режиме работы меняется знак скольжения, и двигатели асинхронного типа генерируют электрическую энергию.

Применение

  • Генераторы нашли применение в качестве тяговых электродвигателей на объектах транспортной инфраструктуры в машинах с реостатным и рекуперативным торможением, а также в сельском хозяйстве в устройствах, где нет потребности в компенсации реактивной мощности и высоких требований к качеству поставляемой электроэнергии (где возможны небольшие скачки напряжения, т.к. регулятор параметров отсутствует).
  • Для бытовых нужд асинхронные генераторы применяются в качестве двигателя автономных электростанций, которые приводятся в действие силами природы: энергией падающей воды, силой ветра и др.
  • Еще одним применением является использование генератора в качестве .
  • Для электроснабжения сварочных агрегатов.
  • Обеспечение бесперебойным электропитанием особо важных объектов: холодильников с лекарствами и др.

Data-lazy-type="image" data-src="http://elquanta.ru/wp-content/uploads/2016/09/ustrojstvo-600x426.jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2016/09/ustrojstvo-768x545..jpg 1024w" sizes="(max-width: 600px) 100vw, 600px">

Это устройство применяется для промышленных целей

Теоретически возможно переоборудование асинхронного двигателя в асинхронный генератор. Для осуществления задачи необходимо:

  • четко понимать, что такое ток;
  • знать физику преобразования механической энергии в электрическую;
  • создать все необходимые условия для появления электротока на обмотке статора.

Устройство асинхронного генератора

Основные узлы асинхронного генератора:

  • Ротор – вращающийся элемент, на котором образуется ЭДС. Тип исполнения – короткозамкнутый. Токопроводящие поверхности изготовлены из алюминия.
  • Ввод кабеля необходим для отпуска полученного электричества.
  • Датчик температуры для обмотки генератора необходим для постоянного мониторинга температуры на этой обмотке.
  • Герметичные фланцы предназначены для уплотнения соединения деталей.
  • Статор, на обмотке которого в процессе генерируется электроэнергия.
  • Обмотка может быть двух типов: однофазная и трехфазная (для напряжения 220 и 380 В), размещена на поверхности статора в виде звезды. 3 точки соединяются между собой, 3 другие – с контактными кольцами.
  • Контактные кольца не имеют электрической связи между собой, закреплены на валу ротора.
  • Щетки необходимы как регулятор, при помощи них происходит запуск трехфазного реостата, за счет чего можно контролировать сопротивление обмотки ротора.
  • Короткозамыкатель применяется для принудительной остановки реостата.

Принцип работы

Во время вращения лопаток ротора на токопроводящей части его начинает появляться электрический ток. Образующееся магнитное поле, наводит на обмотки статора два типа переменного напряжения – однофазное и трехфазное.

Регулировка параметров вырабатываемой энергии осуществляется изменением нагрузки на статоре. Регулятор в схеме отсутствует, т.к. конструктивно устройство не может быть оборудовано данным узлом: отсутствует электрическая связь между ротором и статором.

В каких случаях необходимо применение асинхронных устройств:

  • тяжелые условия работы оборудования – запыленность;
  • нет особых требований к качеству преобразованной энергии (величины частоты и напряжения);
  • нет возможности установки синхронной машины;
  • ограниченный бюджет объекта;
  • существует вероятность перегрузок в переходном процессе работы.

Асинхронные устройства не терпят частых перегрузок во время работы. При работе с завышенной мощностью срабатывает защита. Повторный запуск устройств оказывает негативное влияние на экономический эффект установки.

Т.к. отсутствует регулятор параметров, необходимо подключение измерительных приборов.

Для корректной работы системы и исключения преждевременных ремонтов, необходимо произвести расчет мощности генератора, исходя из предполагаемой нагрузки объекта.

Принцип работы в двухфазном режиме асинхронного генератора применяется для случаев, которые не требуют генерации трехфазного напряжения.

Преимущества:

  • малая рабочая емкость;
  • низкие нагрузки в режиме холостого хода, и как следствие, экономия первичного энергоносителя (ресурс, который приводит в действие ротор).

Недостатки:

  • отсутствует регулятор напряжения тока.

Маломощные генераторы 220 В

В качестве устройства-донора применяются асинхронные электродвигатели с короткозамкнутыми роторами от стиральных машин, бытовых пылесосов, электроприборов полива и аналогичные, в которых конденсаторные батареи подключены в схему параллельно рабочей обмотке. Для повышения эффективности работы увеличивают емкость конденсатора: в меньшей степени для активной нагрузки (лампы, паяльники), и в большей – для индуктивной (например, холодильники, телевизоры и т.п.).

  • Мощность первичного устройства выбирается на 50..100% больше, чем потребляемая мощность асинхронным генератором. Это необходимо для снижения потерь и повышения КПД процесса. Повышения КПД добиваются путем постоянного или кратковременного увеличения оборотов механического элемента.
  • Так как в схеме отсутствует регулятор тока, для стабильной работы установки необходим постоянный контроль параметров, т.е. наличие прибора измерения частоты (тахометра), напряжения (вольтметра) и набора переключателей (для подключения нагрузки на генератор, и два – для коммутации цепи возбуждения. Такая схема упрощает запуск и повышает стабильность работы электрооборудования.
  • В случае присоединения к генератору бытовой сети освещения, в электрической цепи необходимо предусмотреть двухфазный рубильник, который в данном случае будет отключать электроосвещение от стационарной сети.

Однофазные рубильники для отключения применять запрещено в данном случае, т.к. необходимо отключение фазного и нулевого провода.

Эффективность установки

Перед проведением реконструкции необходимо учитывать масштаб экономического эффекта нового оборудования и целесообразность проведения процедуры.

Преимущества устройств:

  1. Низкая себестоимость электроэнергии: для преобразования необходимо наличие магнитного поля, которое генерирует электрический ток.
  2. В токе малое количество высших гармоник: малые потери на собственный нагрев, образование магнитных полей и др.
  3. Высокая надежность.
  4. Отсутствие цепи возбуждения.
  5. Дешевизна готовых моделей.
  6. Возможность переоборудования простейшего асинхронного двигателя в генератор.
  7. Отсутствие в схеме устройства коллекторно-щеточного механизма, что повышает срок эксплуатации.
  8. Отсутствие необходимости обслуживания конденсаторных батарей.

Недостатки:

  1. Невозможность выработать промышленную частоту генерируемого тока.
  2. Отсутствует регулятор параметров сети.
  3. Необходимость включения в схему работы выпрямителей.
  4. Индуктивная нагрузка требует увеличения прилагаемой потребной емкости. Следовательно, возрастает потребность подключения в схему устройства дополнительных конденсаторных элементов. Что впоследствии повышает стоимость установки.
  5. Не меньшая техническая сложность устройства, чем синхронные генераторы.
  6. Высокая чувствительность к перепадам нагрузки. Т.к. для работы устройства используется конденсатор, который забирает энергию (в традиционных генераторах применяют аккумуляторы, имеющие запас мощности), при увеличении нагрузки электроэнергии может не хватить на подзарядку и генерация прекратится. Для предотвращения этого явления используют батареи с изменяемым объемом емкости в зависимости от нагрузки. Применение данного оборудования экономически целесообразно для крупных объектов.

Преобразование двигателя

Принцип преобразования двигателя в простейший асинхронный генератор:

  1. Для модернизации понадобится двигатель от стиральной машины.
  2. Уменьшить толщину стенок сердечника. Для этого необходимо на токарном станке обточить по 2 мм по всей поверхности. Проделать отверстия (несквозные) не более 5мм глубиной.
  3. Из тонкого листа металла либо жести изготовить полосу, размерами соответствующую габаритам ротора.
  4. Установить неодимовые магниты в полученной свободной площади в количестве не менее 8 штук. Зафиксировать суперклеем.

Магниты необходимо прижимать к поверхности до полного застывания, иначе произойдет их смещение. Рекомендовано использовать очки, чтобы клей не попал в глаза в случае выскальзывания магнита.

  1. Плотной бумагой закрыть ротор со всех сторон и зафиксировать края скотчем.
  2. Эффективно загерметизировать мастикой торцевую часть ротора.
  3. Свободное пространство между магнитными элементами заполнить эпоксидной смолой через проделанное отверстие в бумаге.
  4. После застывания смолы убрать слой бумаги.
  5. Отшлифовать поверхность ротора наждачной бумагой, при наличии можно использовать дремель.
  6. Двумя проводами присоединить двигатель к рабочей обмотке. Удалить все неиспользуемые проводники.
  7. При необходимости заменить подшипники на новые.
  8. Установить выпрямитель тока и контроллер зарядки.

Data-lazy-type="image" data-src="http://elquanta.ru/wp-content/uploads/2016/09/testirovanie-600x338.jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2016/09/testirovanie-768x432..jpg 1024w" sizes="(max-width: 600px) 100vw, 600px">

Тестирование собранного прибора

При использовании асинхронного генератора, как и других электроустройств, необходимо соблюдать правила техники безопасности:

  • Прибор должен быть защищен от механических воздействий и погодных условий.
  • Рекомендовано изготовление специального защитного кожуха под собранный генератор.
  • Для корректной работы необходим постоянный мониторинг параметров устройства (напряжения, частоты), т.к. отсутствует регулятор величины тока. Установка измерительных приборов позволит контролировать эффективность автономной системы.
  • Самодельный генератор в целях безопасности рекомендовано использовать на напряжение 0,23 кВ.
  • Устройство должно быть присоединено к контуру заземления.
  • Следует избегать длительной работы в режиме холостого хода.
  • Запрещено допускать перегрев оборудования.
  • Генератор необходимо оборудовать кнопкой включения/отключения для оптимизации работы.

При отсутствии знаний основ электротехники специалисты настоятельно рекомендуют приобрести генератор заводского изготовления.

Реконструкция асинхронного двигателя

Процесс состоит из трех этапов:

  1. Подключение конденсаторных батарей к зажимам. После этого на обмотке начинается процесс намагничивания, который обусловлен движением опережающего тока.
  2. Самовозбуждение устройства. Происходит при правильном подборе емкости конденсаторов.
  3. Получение итоговых значений напряжения. Зависят от технических характеристик устройства, типа и емкости конденсаторов.

Data-lazy-type="image" data-src="http://elquanta.ru/wp-content/uploads/2016/09/modernizaciya-600x450.jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2016/09/modernizaciya-768x576..jpg 1024w, https://elquanta.ru/wp-content/uploads/2016/09/modernizaciya.jpg 1600w" sizes="(max-width: 600px) 100vw, 600px">

Модернизация асинхронного двигателя

При правильном выполнении действий можно получить генератор с характеристиками асинхронного двигателя.

Видео

Асинхронные генераторы – полезная вещь в домашнем хозяйстве. Более мощные устройства вполне могут служить в качестве автономных электростанций, которые обеспечат нормальные параметры напряжения и частоты сети.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2016/09/generator-02-1.jpg 700w" sizes="(max-width: 600px) 100vw, 600px">

Оцените статью:

Для обеспечения бесперебойного электроснабжения дома используют генераторы переменного тока, приводимые во вращение дизельными или карбюраторными двигателями внутреннего сгорания. Но из курса электротехники известно, что любой электродвигатель обратим: он также способен и вырабатывать электроэнергию. Можно ли сделать генератор из асинхронного двигателя своими руками, если он и двигатель внутреннего сгорания уже имеются? Ведь тогда не потребуется покупка дорогой электростанции, а можно будет обойтись подручными средствами.

Конструкция асинхронного электродвигателя

Асинхронный электродвигатель включает в себя две основные детали: неподвижный статор и вращающегося внутри него ротор. Ротор вращается на подшипниках, закрепленных в съемных торцевых частях. Ротор и статор содержат электрические обмотки, витки которых уложены в пазы.

Статорная обмотка подключается к сети переменного тока, однофазной или трехфазной. Металлическая часть статора, куда она уложена, называется магнитопроводом. Он выполнен из отдельных тонких пластин с покрытием, изолирующих их друг от друга. Этим исключается появление вихревых токов, делающих работу электродвигателя невозможной из-за возникновения чрезмерных потерь на нагрев магнитопровода.

Выводы от обмоток всех трех фаз располагаются в специальном боксе на корпусе электродвигателя. Его называют барно, в нем выводы обмоток соединяются между собой. В зависимости от питающего напряжения и технических данных мотора выводы объединяются либо в звезду, либо в треугольник.


Обмотка ротора любого асинхронного электродвигателя похожа на «беличью клетку», так ее и называют. Она выполнена в виде ряда токопроводящих алюминиевых стержней, рассредоточенных по наружной поверхности ротора. Концы стержней замкнуты, поэтому такой ротор называют короткозамкнутым.
Обмотка, как и статорная, расположена внутри магнитопровода, также набранного из изолированных металлических пластин.

Принцип действия асинхронного электродвигателя

При подключении питающего напряжения к статору по виткам обмотки протекает ток. Он создает внутри магнитное поле. Поскольку ток переменный, то поле изменяется в соответствии с формой питающего напряжения. Расположение обмоток в пространстве выполнено так, что поле внутри него оказывается вращающимся.
В обмотке ротора вращающееся поле наводит ЭДС. А раз витки обмотки накоротко замкнуты, то в них появляется ток. Он взаимодействует с полем статора, это приводит к появлению вращения вала электродвигателя.

Электродвигатель называют асинхронным, потому что поле статора и ротор вертятся с разными скоростями. Эта разница скоростей называется скольжением (S).


где:
n – частота магнитного поля;
nr – частота вращения ротора.
Чтобы регулировать скорость вала в широких пределах, асинхронные электродвигатели выполняют с фазным ротором. На таком роторе намотаны смещенные в пространстве обмотки, такие же, как и на статоре. Концы от них выведены на кольца, с помощью щеточного аппарата к ним подключаются резисторы. Чем большее сопротивление подключить к фазному ротору, тем меньше будет скорость его вращения.

Асинхронный генератор

А что будет, если ротор асинхронного электродвигателя вращать? Сможет ли он вырабатывать электроэнергию, и как сделать генератор из асинхронного двигателя?
Оказывается, это возможно. Для того, чтобы на обмотке статора появилось напряжение, изначально необходимо создать вращающееся магнитное поле. Оно появляется за счет остаточной намагниченности ротора электрической машины. В дальнейшем, при появлении тока нагрузки, сила магнитного поля ротора достигает требуемой величины и стабилизируется.
Для облегчения процесса появления напряжения на выходе используется батарея конденсаторов, подключаемая к статору асинхронного генератора на момент запуска (конденсаторное возбуждение).

Но остается неизменным параметр, свойственный асинхронному электродвигателю: величина скольжения. Из-за него частота выходного напряжения асинхронного генератора будет меньшей, чем частота вращения вала.
Кстати, вал асинхронного генератора необходимо вращать с такой скоростью, чтобы была достигнута номинальная частота вращения поля статора электродвигателя. Для этого нужно узнать скорость вращения вала из таблички, расположенной на корпусе. Округлив ее значение до ближайшего целого числа, получают скорость вращения для ротора переделываемого в генератор электродвигателя.

Например, для электродвигателя, табличка которого изображена на фото, скорость вращения вала равна 950 оборотов в минуту. Значит, скорость вращения вала должна быть 1000 оборотов в минуту.

Чем асинхронный генератор хуже синхронного?

Насколько хорош будет самодельный генератор из асинхронного двигателя? Чем он будет отличаться от синхронного генератора?
Для ответа на эти вопросы кратко напомним принцип работы синхронного генератора. Через контактные кольца к обмотке ротора подводится постоянный ток, величина которого регулируется. Вращающееся поле ротора создает в обмотке статора ЭДС. Для получения требуемой величины напряжения генерации автоматическая система регулировки возбуждения изменит ток в роторе. Поскольку за напряжением на выходе генератора следит автоматика, то в результате непрерывного процесса регулирования напряжение всегда остается неизменным и не зависит от величины тока нагрузки.
Для запуска и работы синхронных генераторов используются независимые источники питания (аккумуляторные батареи). Поэтому начало его работы не зависит ни от появления тока нагрузки на выходе, ни от достижения требуемой скорости вращения. От скорости вращения зависит только частота выходного напряжения.
Но даже при получении тока возбуждения от генераторного напряжения все сказанное выше остается справедливым.
Синхронный генератор имеет еще одну особенность: он способен генерировать не только активную, но и реактивную мощность. Это очень важно при питании потребляющих ее электродвигателей, трансформаторов и прочих агрегатов. Недостаток реактивной мощности в сети приводит к росту потерь на нагрев проводников, обмоток электрических машин, снижении величины напряжения у потребителей относительно генерируемой величины.
Для возбуждения же асинхронного генератора используется остаточная намагниченность его ротора, что само по себе является величиной случайной. Регулирование параметров, влияющих на величину его выходного напряжения, в процессе работы не представляется возможным.

К тому же асинхронный генератор не вырабатывает, а потребляет реактивную мощность. Она необходима ему для создания тока возбуждения в роторе. Вспомним про конденсаторное возбуждение: за счет подключения батареи конденсаторов при запуске создается реактивная мощность, требуемая генератору для начала работы.
В результате напряжение на выходе асинхронного генератора не стабильно и изменяется в зависимости от характера нагрузки. При подключении к нему большого числа потребителей реактивной мощности обмотка статора может перегреваться, что скажется на сроке службы ее изоляции.
Поэтому применение асинхронного генератора ограничено. Он может работать в условиях, близким к «парниковым»: никаких перегрузок, пусковых токов нагрузки, мощных потребителей реактива. И при этом электроприемники, подключенные к нему, не должны быть критичными к изменению величины и частоты напряжения питания.
Идеальным местом для применения асинхронного генератора являются системы альтернативной энергетики, работающие от энергии воды или ветра. В этих устройствах генератор не снабжает потребителя напрямую, а заряжает аккумуляторную батарею. От нее уже, через преобразователь постоянного тока в переменный, питается нагрузка.
Поэтому, если нужно собрать ветряк или небольшую гидроэлектростанцию, лучшим выходом из положения является именно асинхронный генератор. Здесь работает его главное и единственное достоинство – простота конструкции. Отсутствие колец на роторе и щеточного аппарата приводит к тому, что в процессе эксплуатации его не нужно постоянно обслуживать: чистить кольца, менять щетки, удалять графитовую пыль от них. Ведь, чтобы сделать ветрогенератор из асинхронного двигателя своими руками, вал генератора напрямую нужно соединить с лопастями ветряка. Значит – конструкция будет находиться на большой высоте. Снимать ее оттуда хлопотно.

Генератор на магнитах

А почему магнитное поле нужно обязательно создавать с помощью электрического тока? Ведь есть же мощные его источники – неодимовые магниты.
Для переделки асинхронного двигателя в генератор потребуются цилиндрические неодимовые магниты, которые будут установлены на место штатных проводников обмотки ротора. Сначала нужно подсчитать необходимое количество магнитов. Для этого извлекают ротор из переделываемого в генератор двигателя. На нем четко видны места, в которых уложена обмотка «беличьего колеса». Размеры (диаметр) магнитов выбирается таким, чтобы при установке строго по центру проводников короткозамкнутой обмотки они не соприкасались с магнитами следующего ряда. Между рядами должен остаться зазор не менее, чем диаметр применяемого магнита.
Определившись с диаметром, вычисляют, сколько магнитов поместится по длине проводника обмотки от одного края ротора до другого. Между ними при этом оставляют зазор не менее одного – двух миллиметров. Умножая количество магнитов в ряду, на число рядов (проводников обмотки ротора), получают требуемое их количество. Высоту магнитов не стоит выбирать очень большой.
Для установки магнитов на ротор асинхронного электродвигателя его потребуется доработать: снять на токарном станке слой металла на глубину, соответствующую высоте магнита. При этом ротор обязательно нужно тщательно отцентровать в станке, чтобы не сбить его балансировку. Иначе у него появится смещение центра масс, которое приведет к биению в работе.

Затем приступают к установке магнитов на поверхность ротора. Для фиксации используют клей. У любого магнита есть два полюса, условно называемые северным и южным. В пределах одного ряда полюса, расположенные в сторону от ротора, должны быть одинаковыми. Чтобы не ошибиться в установке, магниты сначала сцепляют между собой в гирлянду. Они сцепятся строго определенным образом, так как притягиваются они друг к другу только разноименными полюсами. Теперь остается только отметить одноименные полюса маркером.
В каждом последующем ряду полюс, находящийся снаружи, изменяется. То есть, если вы выложили ряд магнитов с отмеченным маркером полюсом, расположенным наружу от ротора, то следующий выкладывается магнитами, развернутыми наоборот. И так далее.
После приклеивания магнитов их нужно зафиксировать эпоксидной смолой, Для этого вокруг получившийся конструкции из картона или плотной бумаги делают шаблон, в который зальется смола. Бумагу оборачивают вокруг ротора, обматывают скотчем или изолентой. Одну из торцевых частей замазывают пластилином или также заклеивают. Затем устанавливают ротор вертикально и заливают в полость между бумагой и металлом эпоксидную смолу. После ее отвердевания приспособления удаляют.
Теперь снова зажимаем ротор в токарный станок, центруем, и шлифуем поверхность, залитую эпоксидкой. Это необходимо не из эстетических соображений, а для минимизации влияния возможной разбалансировки, образовавшейся из-за дополнительных деталей, установленных на ротор.
Шлифовку производят сначала крупнозернистой наждачной бумагой. Ее крепят на деревянном бруске, который затем равномерно перемещают по вращающейся поверхности. Затем можно применить наждачную бумагу с более мелким зерном.

Теперь готовый ротор можно вставить обратно в статор и испытать получившуюся конструкцию. Она может быть с успехом использована теми, кто хочет сделать, например, ветрогенератор из асинхронного двигателя. Есть только один недостаток: стоимость неодимовых магнитов очень велика. Поэтому, прежде чем начать переделывать ротор и тратить деньги на запчасти, следует подсчитать, какой вариант экономически более выгоден: сделать генератор из асинхронного двигателя или приобрести готовый.

Не всегда местные электросети способны полноценно обеспечивать электричеством дома, особенно, если это касается загородных дач и особняков. Перебои с постоянным электроснабжением или же его полное отсутствие заставляет искать получения электричества. Одним из таких является использование – прибора, способного преобразовывать и накапливать электричество , используя для этого самые необычные ресурсы (энергия , приливов и отливов). Его принцип работы достаточно простой, что делает возможным сделать электрогенератор своими руками. Возможно, самодельная модель не сможет конкурировать с аналогом заводской сборки, однако это отличный способ сэкономить более 10 000 рублей. Если рассматривать самодельный электрогенератор в качестве временного альтернативного источника электроснабжения, то вполне можно обойтись и самоделкой.

Как сделать электрогенератор, что для этого потребуется, а также какие нюансы придется учитывать, узнаем далее.

Желание иметь в своем пользовании электрогенератор омрачается одной неприятностью – это высокая стоимость агрегата . Как ни крути, но самые маломощные модели имеют достаточно заоблачную стоимость – от 15 000 рублей и выше. Именно этот факт наталкивает на мысль о собственноручном создании генератора. Однако, сам процесс может быть затруднительным , если:

  • нет навыка в работе с инструментом и схемами;
  • нет опыта в создании подобных приборов;
  • не имеется в наличии необходимых деталей и запчастей.

Если же все это и огромное желание присутствуют, то можно попробовать собрать генератор , руководствуясь указаниями по сборке и приложенной схемой.

Не секрет, что покупной электрогенератор будет обладать более расширенным перечнем возможностей и функций, в то время как самоделка способна подводить и давать сбои в самые неподходящие моменты. Поэтому, покупать или делать своими руками – вопрос сугубо индивидуальный, требующий ответственного подхода.

Как работает электрогенератор

Принцип работы электрогенератора основывается на физическом явлении электромагнитной индукции. Проводник, проходящий через искусственно созданное электромагнитное поле, создает импульс, который преобразуется в постоянный ток.

Генератор имеет двигатель, который способен вырабатывать электричество, сжигая в своих отсеках определенный вид топлива: , или . В свою очередь топливо, попадая в камеру сжигания, в процессе горения вырабатывает газ, который вращает коленчатый вал. Последний передает импульс ведомому валу, который уже способен предоставить определенное количество энергии на выходе.

С разбора CD-rom скопилось уже некоторое количество бесколлекторных двигателей постоянного тока (это те, что крутят диск). И место вроде много не занимают, но на глаза попадаются часто. Наконец принял решение, что надо уже как-то с ними определиться.

Итак, это бесколекторный двигатель постоянного тока, положение ротора в нём отслеживается тремя датчиками Холла, управляется при помощи микросхемы драйвера ВА6849FP (регулировка оборотов). В теории всё просто, а вот на практике впечатления могут зашкалить уже от одного обозрения платки на которой движок собственно и установлен.

Поэтому не стал вникать в назначение многочисленных выводов шлейфа, а просто взял и располовинил двигатель, и увидел его статор. Однако полный обзор печатной платы был по прежнему недосягаем. Осознав, что без жертв не обойтись, отпаял провода (3 штуки) идущие с обмоток статора на плату, а затем сложил - переломил вдвое плату вместе с металлической пластиной крепления.

Освобождённый статор плюхнулся на стол и опять же в позновательных целях был незамедлительно размотан. Теперь могу сообщить, что мотор имел три обмотки (фазы) соединённых методом «звезда», но вполне возможен вариант когда они могут быть соединены методом «дельта».

Схема сборки

Электродвигателя конечно не стало, но вместе с ним не стало и робости перед неизведанным, ибо и неизведанного теперь не было. На фото проводники образуют обмотки и заканчиваются выводами. Соединения обмоток отличаются, но электрическая сущность больших изменений не претерпевает. Относительно толстые провода обмоток статора навели на мысль, что с этого движка можно получить неплохой ток, будь он использован в качестве генератора, да ещё если и несколько вольт напряжения выдаст, то возможно «счастье»!

Остановился вот на такой схеме снятия с электродвигателя, впрочем, теперь уже генератора, вырабатываемого им электрического тока. Данная схема была собрана и опробована со следующими номиналами электронных компонентов: С1 - 100 мкФ х 16 В, все шесть диодов 1N5817.

Было бы интересно опробовать и такую схему, но пока «руки не дошли». Как более совершенный вариант - поставить на выход .

Для дальнейших действий был взят ещё один электродвигатель и приведён в должное состояние для подключения и крепления. Шестерёнки (зубчатая пара) с передаточным отношением 1:5 от китайского фонарика - «жучка».

Всё было смонтировано на подходящее основание. Важным в этой операции является правильно «взять» межцентровое расстояние зубчатых колёс и установить их оси вращения в единой пространственной плоскости.

Схема собрана, вновь обращённый генератор к тесту готов.

При интенсивном, но без мазохизма, вращении большого зубчатого колеса пальцами рук напряжение легко достигает отметки в 1,7 вольта (без нагрузки).

При подключении нагрузки, лампочки на 2,5 В и 150 мА, сила тока достигает 120 мА. Лампочка вспыхивает в пол накала.

Видео - работа под нагрузкой

Возьму на себя смелость заявить, что даже данный конкретный двигатель возможно использовать в качестве способного вырабатывать электрический ток в достаточном количестве для зарядки одного аккумулятора ААА напряжением 1,2 В и ёмкостью до 1000 мА включительно. Прошу обратить внимание на то фото, которое показывает монтаж шестерён на основании. На правую сторону большого зубчатого колеса так и «проситься» установка ещё одного моторчика. Кинематическая схема будет такой: одно ведущее колесо вращает два ведомых. Возможности удваиваются, реальным становиться собрать повышающий преобразователь и заряжать даже аккумуляторы мобильных телефонов. Вопросами добычи электричества занимался Babay .

Обсудить статью ГЕНЕРАТОР ИЗ ДВИГАТЕЛЯ СВОИМИ РУКАМИ


Часто возникает необходимость обеспечить автономное электропитание в дачном домике. В подобной ситуации выручит генератор из асинхронного двигателя, сделанный своими руками. Его несложно изготовить самостоятельно, обладая определенными навыками в обращении с электротехникой.

Принцип работы

Благодаря простой конструкции и эффективному функционированию асинхронные двигатели широко используются в промышленности. Они составляют значительную долю всех двигателей. Принцип их работы заключается в создании магнитного поля действием переменного электрического тока.

Экспериментами доказано, что вращением металлической рамки в магнитном поле можно индуцировать в ней электрический ток, появление которого подтверждается свечением лампочки. Это явление называется электромагнитной индукцией.

Устройство двигателя

Асинхронный двигатель состоит из металлического корпуса, внутри которого находятся:

  • статор с обмоткой, по которой пропускается переменный электрический ток;
  • ротор с витками намотки, по которой проходит ток противоположного направления.

Оба элемента находятся на одной оси. Стальные пластины статора плотно прилегают друг к другу, в некоторых модификациях их прочно сваривают. Медная обмотка статора изолирована от сердечника картонными прокладками. В роторе обмотка выполнена из алюминиевых прутьев, замкнутых с двух сторон. Магнитные поля, образующиеся при прохождении переменного тока, действуют друг на друга. Между обмотками возникает ЭДС, которая вращает ротор, так как статор неподвижен.

Генератор из асинхронного двигателя состоит из тех же составных частей, однако в данном случае происходит обратное действие, то есть переход механической или тепловой энергии в электрическую. При работе в режиме двигателя у него сохраняется остаточная намагниченность, индуцирующая электрическое поле в статоре.

Скорость вращения ротора должна быть выше изменения магнитного поля статора. Затормозить его можно реактивной мощностью конденсаторов. Накапливаемый ими заряд противоположен по фазе и дает «подтормаживающий эффект». Вращение можно обеспечить энергией ветра, воды, пара.

Схема генератора

Генератор из асинхронного двигателя отличается простой схемой. После достижения синхронной скорости вращения происходит процесс образования в обмотке статора электрической энергии.

Если присоединить к обмотке конденсаторную батарею, происходит возникновение опережающего электрического тока, образующего магнитное поле. При этом конденсаторы должны обладать емкостью выше критической, которая определяется техническими параметрами механизма. Сила образующегося тока будет зависеть от емкости батареи конденсаторов и характеристик мотора.

Технология изготовления

Работа по преобразованию асинхронного электромотора в генератор достаточно проста при наличии необходимых деталей.

Для начала процесса по переделке необходимо наличие следующих механизмов и материалов:

  • асинхронного двигателя – подойдет однофазный мотор от старой стиральной машины;
  • прибора для измерения частоты вращения ротора – тахометра или тахогенератора;
  • неполярных конденсаторов – пригодны модели вида КБГ-МН с величиной рабочего напряжения 400 В;
  • набора подручных инструментов – дрели, ножовок, ключей.






Пошаговая инструкция

Изготовление генератора своими руками из асинхронного двигателя производится по представленному алгоритму.

  • Генератор должен настраиваться так, чтобы его скорость была больше частоты оборотов двигателя. Величина скорости вращения измеряется тахометром или другим прибором при включении двигателя в электросеть.
  • Полученная величина должна быть увеличена на 10% от имеющегося показателя.
  • Подбирается емкость для конденсаторной батареи – она не должна быть чересчур большой, в противном случае оборудование будет сильно нагреваться. Для ее расчета можно воспользоваться таблицей зависимости между емкостью конденсатора и реактивной мощностью.
  • На оборудование устанавливается конденсаторная батарея, которая обеспечит расчетную скорость вращения для генератора. Ее установка требует особого внимания – все конденсаторы нужно надежно изолировать.

Для 3-фазных двигателей конденсаторы подключают по типу «звезды» или «треугольника». Первый тип соединения делает возможным выработку электроэнергии при меньшей скорости вращения ротора, но на выходе показатель напряжения будет ниже. Для уменьшения его до 220 В используют понижающий трансформатор.

Изготовление генератора на магнитах

В магнитном генераторе не требуется применение конденсаторной батареи. В этой конструкции используются неодимовые магниты. Для выполнения работы следует:

  • расположить магниты на роторе по схеме, с соблюдением полюсов – на каждом из них должно быть не меньше 8 элементов;
  • предварительно ротор нужно проточить на токарном станке на толщину магнитов;
  • с помощью клея прочно зафиксировать магниты;
  • остаток свободного пространства между магнитными элементами залить эпоксидкой;
  • после установки магнитов нужно проверить диаметр ротора – он не должен увеличиться.

Преимущества самодельного электрогенератора

Генератор из асинхронного двигателя, сделанный своими руками, станет экономичным источником тока, который позволит снизить потребление централизованной электроэнергии. С его помощью можно обеспечить питание бытовых электроприборов, компьютерной техники, обогревателей. Самодельный генератор из асинхронного двигателя обладает несомненными достоинствами:

  • простой и надежной конструкцией;
  • эффективной защитой внутренних частей от пыли или влаги;
  • устойчивостью к перегрузкам;
  • длительным сроком эксплуатации;
  • возможностью подключать приборы без инверторов.

При работе с генератором следует учесть также возможность случайных изменений электрического тока.