Индукционная вакуумная плавильная печь промышленной частоты. Принцип индукционной печи для плавки различных металлов

Вакуумные агрегаты являются незаменимым оборудованием на производствах, где требуется осуществлять выплавку металлов и сплавов, обеспечивая им высокую степень очистки. Герметичная вакуумная камера предотвращает проникновение загрязнений, посторонних газов. Это позволяет получать продукцию без примесей, окислений. Если вам нужно купить вакуумную индукционную печь в Москве, ее можно заказать в нашей компании.

Принцип работы вакуумной индукционной печи

Вакуумная печь индукционного типа оснащается тиглем, в котором осуществляется плавка металла. Данные изделия по принципу работы делятся на полунепрерывные и периодические. Полунепрерывная вакуумная установка позволяет выполнять несколько плавок, не открывая корпус. У оборудования периодического типа происходит разгерметизация камеры после каждой выплавки.

Вакуумная камера , в которой происходит процесс плавки, является герметичной, что и дает возможность получать абсолютно чистую продукцию. Металл при обработке не окисляется, благодаря отсутствию кислорода, в него не попадают посторонние частицы. Поддерживает нужное давление, откачивает воздух вакуумный насос , которым оснащено устройство.

У инфракрасных печей есть ряд отличий от агрегатов других типов:

  • допускается использование любого материала: лома, кусков, брикетов;
  • жидкий металл может находиться в условиях вакуума долгое время;
  • в процессе выплавки есть возможность контролировать, изменять химический состав и температуру сплава;
  • можно использовать разные способы рафинирования и раскисления во время плавки.

Эта вакуумная установка может применяться для выплавки жаропрочных, прецизионных жаростойких сплавов, нержавеющей стали.

Преимущества Дана Инжиниринг

Покупка готовых вакуумных индукционных печей или заказ их изготовления по эксклюзивному проекту в компании Дана Инжиниринг в Москве обеспечивает несколько преимуществ:

В нашей компании работают опытные высококвалифицированные специалисты. Им принадлежит ряд инноваций, позволивших повысить эффективность и экономичность установок. За время работы мы наладили надежные связи с лучшими производителями комплектующих. Конструкторское бюро находится на территории предприятия, что позволяет быстро разрабатывать и реализовывать проекты.

Продажа и стоимость вакуумных индукционных печей

Для желающих заблаговременно определиться с будущими расходами, которых потребует вакуумная индукционная печь, цена стандартных конструкций указана в прайс-листе. Стоимость оборудования, которое производится по эксклюзивным проектам заказчика, рассчитывается индивидуально. Она складывается из нескольких факторов: тип печи, ее размеры, материал изготовления камеры и тигля, дополнительные устройства.

Принцип индукционного нагрева заключается в преобразовании энергии электромагнитного поля, поглощаемой электропроводным нагреваемым объектом, в тепловую энергию.

В установках индукционного нагрева электромагнитное поле создают индуктором, представляющим собой многовитковую цилиндрическую катушку (соленоид). Через индуктор пропускают переменный электрический ток, в результате чего вокруг индуктора возникает изменяющееся во времени переменное магнитное поле. Это — первое превращение энергии электромагнитного поля, описываемое первым уравнением Максвелла .

Нагреваемый объект помещают внутрь индуктора или рядом с ним. Изменяющийся (во времени) поток вектора магнитной индукции, созданной индуктором, пронизывает нагреваемый объект и индуктирует электрическое поле. Электрические линии этого поля расположены в плоскости, перпендикулярной направлению магнитного потока, и замкнуты, т. е. электрическое поле в нагреваемом объекте носит вихревой характер. Под действием электрического поля, согласно закону Ома, возникают токи проводимости (вихревые токи). Это — второе превращение энергии электромагнитного поля, описываемое вторым уравнением Максвелла .

В нагреваемом объекте энергия индуктированного переменного электрического поля необратимо переходит в тепловую. Такое тепловое рассеивание энергии, следствием чего является нагрев объекта, определяется существованием токов проводимости (вихревых токов). Это — третье превращение энергии электромагнитного поля, причем энергетическое соотношение этого превращения описывается законом Ленца-Джоуля .

Описанные превращения энергии электромагнитного поля дают возможность:
1) передать электрическую энергию индуктора в нагреваемый объект, не прибегая к контактам (в отличие от печей сопротивления)
2) выделить тепло непосредственно в нагреваемом объекте (так называемая «печь с внутренним источником нагрева» по терминологии проф. Н. В. Окорокова), в результате чего использование тепловой энергии оказывается наиболее совершенным и скорость нагрева значительно увеличивается (по сравнению с так называемыми «печами с внешним источником нагрева»).

На величину напряженности электрического поля в нагреваемом объекте оказывают влияние два фактора: величина магнитного потока, т. е. число магнитных силовых линий, пронизывающих объект (или сцепленных с нагреваемым объектом), и частота питающего тока, т. е. частота изменений (во времени) магнитного потока, сцепленного с нагреваемым объектом.

Это дает возможность выполнить два типа установок индукционного нагрева, которые различаются и по конструкции и по эксплуатационным свойствам: индукционные установки с сердечником и без сердечника.

По технологическому назначению установки индукционного нагрева подразделяют на плавильные печи для плавки металлов и нагревательные установки для термической обработки (закалки, отпуска), для сквозного нагрева заготовок перед пластической деформацией (ковкой, штамповкой), для сварки, пайки и наплавки, для химико-термической обработки изделий и т. д.

По частоте изменения тока, питающего установку индукционного нагрева, различают:
1) установки промышленной частоты (50 Гц), питающиеся от сети непосредственно или через понижающие трансформаторы;
2) установки повышенной частоты (500-10000 Гц), получающие питание от электромашинных или полупроводниковых преобразователей частоты;
3) высокочастотные установки (66 000-440 000 Гц и выше), питающиеся от ламповых электронных генераторов.

Установки индукционного нагрева с сердечником

В плавильной печи (рис. 1) цилиндрический многовитковый индуктор, изготовленный из медной профилированной трубки, насаживают на замкнутый сердечник, набранный из листовой электротехнической стали (толщина листов 0,5 мм). Вокруг индуктора размещают огнеупорную керамическую футеровку с узким кольцевым каналом (горизонтальным или вертикальным), где находится жидкий металл. Необходимым условием работы является замкнутое электропроводное кольцо. Поэтому невозможно расплавить отдельные куски твердого металла в такой печи. Для пуска печи приходится в канал заливать порцию жидкого металла из другой печи или оставлять часть жидкого металла от предыдущей плавки (остаточная емкость печи).

Рис.1. Схема устройства индукционной канальной печи: 1 - индикатор; 2 - металл; 3 - канал; 4 - магнитопровод; Ф - основной магнитный поток; Ф 1р и Ф 2р - магнитные потоки рассеяния; U 1 и I 1 - напряжение и ток в цепи индуктора; I 2 - ток проводимости в металле

В стальном магнитопроводе индукционной канальной печи замыкается большой рабочий магнитный поток и лишь небольшая часть полного магнитного потока, создаваемого индуктором, замыкается через воздух в виде потока рассеяния. Поэтому такие печи успешно работают на промышленной частоте (50 Гц).

В настоящее время существует большое число типов и конструкций таких печей, разработанных во ВНИИЭТО (однофазные и многофазные с одним и несколькими каналами, с вертикальным и горизонтальным закрытым каналом разной формы). Эти печи применяют для плавки цветных металлов и сплавов со сравнительно низкой температурой плавления, а также для получения высококачественного чугуна. При плавке чугуна печь используют либо в качестве копильника (миксера), либо в качестве плавильного агрегата. Конструкции и технические характеристики современных индукционных канальных печей приведены в специальной литературе.

Установки индукционного нагрева без сердечника

В плавильной печи (рис. 2) расплавляемый металл находится в керамическом тигле, помещенном внутрь цилиндрического многовиткового индуктора. изготовляют из медной профилированной трубки, через которую пропускают охлаждающую воду. Узнать подробнее о конструкции индуктора можно .

Отсутствие стального сердечника приводит к резкому увеличению магнитного потока рассеяния; число магнитных силовых линий, сцепляемых с металлом в тигле, будет крайне мало. Это обстоятельство требует соответствующего увеличения частоты изменения (во времени) электромагнитного поля. Поэтому для эффективной работы индукционных тигельных печей приходится питать их токами повышенной, а в отдельных случаях и высокой частоты от соответствующих преобразователей тока. Подобные печи имеют очень низкий естественный коэффициент мощности (cos φ=0,03-0,10). Поэтому необходимо применять конденсаторы для компенсации реактивной (индуктивной) мощности.

В настоящее время имеется несколько типов индукционных тигельных печей, разработанных во ВНИИЭТО в виде соответствующих размерных рядов (по емкости) высокой, повышенной и промышленной частоты, для плавки стали (тип ИСТ).


Рис. 2. Схема устройства индукционной тигельной печи: 1 - индуктор; 2 - металл; 3 - тигель (стрелками показана траектория циркуляции жидкого металла в результате электродинамических явлений)

Преимуществами тигельных печей являются следующие: выделяющееся непосредственно в металле тепло, высокая равномерность металла по химическому составу и температуре, отсутствие источников загрязнения металла (помимо футеровки тигля), удобство управления и регулирования процесса плавки, гигиеничность условий труда. Кроме этого, для индукционных тигельных печей характерны: более высокая производительность вследствие высоких удельных (на единицу емкости) мощностей нагрева; возможность плавить твердую шихту, не оставляя металл от предыдущей плавки (в отличие от канальных печей); малая масса футеровки по сравнению с массой металла, что уменьшает аккумуляцию тепловой энергии в футеровке тигля, снижает тепловую инерцию печи и делает плавильные печи этого типа исключительно удобными для периодической работы с перерывами между плавками, в частности для фасонно-литейных цехов машиностроительных заводов; компактность печи, что позволяет достаточно просто изолировать рабочее пространство от окружающей среды и осуществлять плавку в вакууме или в газовой среде заданного состава. Поэтому в металлургии широко применяют вакуумные индукционные тигельные печи (тип ИСВ).

Наряду с преимуществами у индукционных тигельных печей имеются следующие недостатки: наличие относительно холодных шлаков (температура шлака меньше температуры металла), затрудняющих проведение рафинировочных процессов при выплавке качественных сталей; сложное и дорогое электрооборудование; низкая стойкость футеровки при резких колебаниях температуры вследствие небольшой тепловой инерции футеровки тигля и размывающего действия жидкого металла при электродинамических явлениях. Поэтому такие печи применяют для переплава легированных отходов с целью снижения угара элементов.

Использованная литература:
1. Егоров А.В., Моржин А.Ф. Электрические печи (для производства сталей). М.: «Металлургия», 1975, 352 с.

Нагревание тел с помощью электромагнитного поля, возникающего от воздействия индуцированным током, называется индукционным нагревом. Электротермическое оборудование, или индукционная печь, имеет разные модели, предназначенные для выполнения задач разного назначения.

Конструкция и принцип действия

По техническим характеристикам устройство является частью установки, используемой в металлургической промышленности. Принцип работы индукционной печи зависит от переменного тока , мощность установки формируется назначением прибора, в конструкцию которого входит:

  1. индуктор;
  2. каркас;
  3. плавильная камера;
  4. вакуумная система;
  5. механизмы перемещения объекта нагревания и другие приспособления.

Современный потребительский рынок располагает большим количеством моделей приборов, работающих по схеме образования вихревых токов. Принцип работы и конструкционные особенности промышленной индукционной печи позволяет выполнять ряд специфических операций, связанных с плавкой цветного металла, термической обработкой изделий из металла, спекания синтетических материалов, очисткой драгоценных и полудрагоценных камней. Бытовые приборы используются для дезинфекции предметов быта и обогрева помещений.

Работа ИП (индукционной печи) заключается в нагревании помещенных в камеру предметов вихревыми токами, излучаемыми индуктором, представляющим собой катушку индуктивности, выполненную в форме спирали, восьмерки или трилистника с обмоткой проводом большого поперечного сечения. Работающий от переменного тока индуктор создает импульсное магнитное поле, мощность которого изменяется в соответствии с частотой тока. Предмет, помещенный в магнитное поле, нагревается до точки закипания (жидкости) или плавления (металл).

Установки, работающие с помощью магнитного поля, производятся в двух типах: с магнитным проводником и без магнитопровода. Первый тип приборов имеет в конструкции индуктор, заключенный в металлический корпус, обеспечивающий быстрое повышение температуры внутри обрабатываемого объекта. В печах второго типа магнитотрон находится снаружи установки.

Особенности индукционных приборов

От мастера также требуются навыки конструирования и монтажа электроприборов. Безопасность устройства индивидуальной сборки заключается в ряде особенностей:

  1. емкости оборудования;
  2. рабочей частоты импульса;
  3. мощности генератора;
  4. вихревых потерь;
  5. гистерезисных потерь;
  6. интенсивности тепловой отдачи;
  7. способа футеровки.

Свое название канальные печи получили за наличие в пространстве агрегата двух отверстий с каналом, образующим замкнутый контур. По конструкционным особенностям прибор не может работать без контура, благодаря которому жидкий алюминий находится в непрерывном движении. При несоблюдении рекомендаций завода изготовителя оборудование самопроизвольно отключается, прерывая процесс плавки.

По расположению каналов индукционные плавильные агрегаты бывают вертикальными и горизонтальными с барабанной или цилиндрической формой камеры. Барабанная печь, в которой можно плавить чугун, выполнена из листовой стали. Поворотный механизм оснащен приводными роликами, электродвигателем на две скорости и цепной передачей.

Жидкая бронза заливается через сифон, расположенный на торцевой стенке, присадки и шлаки загружаются и удаляются через специальные отверстия. Выдача готовой продукции осуществляется через V -образный сливной канал, сделанный в футеровке по шаблону, который расплавляется в рабочем процессе. Охлаждение обмотки и сердечника осуществляется воздушной массой, температура корпуса регулируется при помощи воды.

Вакуумные индукционные печи (ВИП) по режиму работы разделяют на печи периодического и полунепрерывного действия.

Печи периодического действия имеют лишь одну камеру – плавильно-заливочную. После каждой плавки и заливки форм указанную камеру разгерметизируют; вынимают из неё залитую форму; чистят и заправляют тигель; вновь загружают в него шихту; устанавливают в камеру пустую форму; закрывают камеру; откачивают из неё воздух и производят новую плавку.

Вакуумные печи полунепрерывного действия имеют, кроме плавильно-заливочной, дополнительные камеры – не менее одной вертикальной и одну или две горизонтальных. Каждая из дополнительных камер одним торцом присоединена к плавильно-заливочной камере (ПЗК), а второй торец свободен. Дополнительные камеры изолированы от плавильно-заливочной (в местах присоединения) вакуумными затворами. Аналогичные затворы открывают или закрывают свободные торцы камер. В ВИП полунепрерывного действия загрузка шихты в тигель и её плавка, подшихтовка и все виды доводки ЖМ, подача порожних форм (или изложниц), их заливка, затвердевание ЖМ, извлечение заполненных форм – все эти технологические операции выполняются без нарушения вакуума в ПЗК.

По способу слива ЖМ из тигля в форму или изложницу различают ВИП :

а) с наклоном всей ПЗК вместе с тиглем и заливаемой изложницей, подвешенной на шарнирах к кожуху этой камеры;

б) с наклоном только тигля внутри ПЗК, а заливаемая форма установлена неподвижно на какой-нибудь опоре внутри камеры.

К вакуумным печам полунепрерывного действия относятся печи ВИАМ – 100, ВИАМ – 24, ИСВ – 0,6, УЛВАК, КОНСАРК и др.

У печи ВИАМ – 100 ПЗК имеет цилиндрическую форму и расположена горизонтальною. Примерно в центре камеры находится тигель (с индуктором), который при сливе ЖМ наклоняется вдоль оси ПЗК. Ниже тигля имеется рольганг (с дисковыми роликами), на котором располагаются литейные формы при заливке. На верхней части кожуха ПЗК установлена вертикальная цилиндрическая камера, через которую загружают в тигель шихту без разгерметизации плавильного рабочего пространства печи. Ось шихтовой вертикальной камеры совпадает с осью симметрии тигля.

Перед началом очередного цикла работы печи

ВИАМ – 100 необходимо: тигель осмотреть, очистить и отремонтировать (если нужно); ПЗК со всех сторон закрыть вакуумными затворами (т.е. изолировать от всех остальных камер) и откачать из неё воздух до остаточного давления – мм рт. ст.; разгерметизировать верхние и боковые камеры, т.е. открыть их наружные вакуумные затворы. Строго говоря, перечисленные операции выполняют перед началом первой плавки. Если печь работает в неперерывном режиме (например в течение двух смен), то ПЗК, естественно, не разгерметизируют и загрузку шихты в тигель осуществляют сразу после слива предыдущей дозы ЖМ.

Далее для возобновления нового цикла плавки необходимо: набрать дозу компонентов шихты в специальную загрузочную корзину, поместить её в шихтовую камеру и закрыть камеру наружным вакуумным затвором; откачать воздух из шихтовой камеры до остаточного давления, равного давлению в ПЗК; открыть внутренний вакуумный затвор между этими камерами, выгрузить шихту из корзины в тигель; поднять пустую корзину в шихтовую камеру и закрыть внутренний вакуумный затвор; подать воздух (при атмосферном давлении) в шихтовую камеру; открыть наружный вакуумный затвор; набрать дозу компонентов шихты в загрузочную корзину и т.д.; начать плавку шихты в тигле.

Печь ВИАМ – 100 имеет также две горизонтальные дополнительные камеры цилиндрической формы. Эти камеры расположены по бокам (слева и справа) центральной ПЗК и присоединены к ней своими рабочими торцами. Как указывалось выше, каждая боковая камера с обоих торцов (рабочего и свободного) закрывается или открывается вакуумными затворами. В нижней части камер имеются рольганги с дисковыми роликами, расположенными на одном уровне с роликами в ПЗК. Через одну из боковых камер (например правую) подаются пустые формы в плавильную камеру для заливки. Назовём правую камеру загрузочной. Через другую (левую) удаляются после их заливки. Левую камеру назовём выгрузочной. Последовательность подачи пустых форм после окончания плавки: установить заливаемые формы на вспомогательный рольганг (перед правой камерой) таким образом, чтобы заливочные чаши разных форм располагались в одной горизонтальной плоскости, наиболее удобной для заливки из тигля; протолкнуть формы на рольганг внутри правой камеры и закрыть её наружным вакуумным затвором; откачать воздух из загрузочной (правой) камеры до остаточного давления, равного давлению в ПЗК; открыть вакуумный затвор между этими камерами, подать (по очереди) первую, вторую и другие формы под заливку, располагая каждую из них так, чтобы заливочная чаша находилась под носком тигля, и залить формы (количество форм зависит от их металлоёмкости и габаритных размеров); закрыть вакуумный затвор между плавильно-заливочной и загрузочной камерами; подать воздух в загрузочную камеру (при атмосферном давлении), открыть наружный вакуумный затвор и готовиться к очередному поступлению форм.

Левую боковую камеру используют следующим образом: закрыть свободный торец наружным вакуумным затвором (рабочий торец был закрыт вакуумным затвором ранее перед началом плавки): откачать воздух из выгрузочной (левой) камеры до остаточного давления, равного давлению в ПЗК; открыть вакуумный затвор между этими камерами, передвинуть залитые формы из плавильной в левую камеру и закрыть вакуумный затвор, сохранив при этом «вакуум» в ПЗК; подать воздух (при атмосферном давлении) в выгрузочную камеру, открыть наружный вакуумный затвор и выкатить залитые формы на вспомогательный рольганг, расположенный после левой камеры. Очерёдность и время работы всех камер должны быть согласованны так, чтобы время простоя печи было наименьшим. Если используются оболочковые керамические формы, полученные литьём по выплавляемым моделям, то время между извлечением этих форм из прокалочной печи и заливкой должно быть не более 15 мин.

Печь ВИАМ – 100 может работать с одной боковой камерой например правой, используя её и для загрузки пустых форм, и для выгрузки залитых. Последовательность закрывания и открывания вакуумных затворов, откачки или подачи воздуха в боковую камеру и т. п. зависит от того, для какой цели она используется на данном этапе работы печи.

Вакуумная печь ВИАМ – 24 состоит из трёх основных камер: плавильно-заливочной, шихтовой и для подачи – выдачи литейных форм.

ПЗК имеет цилиндрическую форму, расположена горизонтально и с торцов закрыта сферическими днищами, из которых переднее открывается подобно двери, а заднее отодвигается вдоль оси камеры. В центре камеры находится тигель (с индуктором), прикреплённый к заднему днищу, поэтому если отодвинуть днище, то тигель извлекается из ПЗК и с помощью например цехового мостового крана можно отремонтировать или заменить тигель или индуктор. При сливе ЖМ тигель наклоняется в плоскости, перпендикулярной оси своей камеры. Под тиглем имеется рольганг с дисковыми роликами для установки форм при заливке.

Шихтовая камера сделана в виде цилиндра, располагается вертикально на кожухе ПЗК соосно с тиглем и изолирована от плавильного пространства вакуумным затвором. Загрузка шихты через эту камеру проводится аналогично печи ВИАМ – 100.

Единственная боковая камера имеет цилиндрическую форму, располагается горизонтально и рабочим торцом соединяется с ПЗК через вакуумный затвор. Подобный затвор закрывает и открывает свободный торец боковой камеры. Внутри камеры имеется рольганг с дисковыми роликами. Последовательность подачи из этой камеры пустых форм под заливку и приёмки залитых форм такая же, как у аналогичных камер печи ВИАМ – 100. Перед камерой также установлен вспомогательный рольганг для пустых и залитых форм.

На рис. 1.5 показано устройство вакуумной ИТП типа ИСВ – 0,6 полунепрерывного действия для литья слитков из жаропрочных сплавов и специальных сталей .

Печь ИСВ – 0,6 обслуживается следующим образом : ПЗК 1 печи закрывается сверху крышкой 7, расположенной на самоходной тележке 8 мостового типа с электроприводом. Тележка с крышкой по рельсам отъезжает вправо (по рис. 1.5), ПЗК открывается, в результате чего освобождается доступ для чистки, ремонта и замены тигля 3.

Рис. 1.5. Вакуумная ИТП типа ИСВ – 0,6

полунепрерывного действия:

1 – плавильно-заливочная камера; 2 – плавильный тигель; 3 – камера для загрузки шихты в тигель; 4 – поворотная колонна; 5 – устройство для взятия проб ЖМ и замера его температуры; 6 – дозатор; 7 – крышка плавильно-заливочной камеры; 8 – четырёхколёсная самоходная тележка; 9 – вакуумный затвор; 10 – камера для загрузки и выгрузки изложниц (т.е. литейных форм);

11 – тележка для подачи изложниц (форм) в загрузочную и плавильно-заливочную камеры и извлечения из них залитых форм; 12 – кожух шихтовой камеры; 13 – корзина для шихты;

14 – лебёдка для опускания и поднимания корзины для шихты

Загрузка шихты в тигель производится с помощью шихтовой камеры 3, которая представляет собой цилиндрический кожух 12, внутри которого на тросе подвешена корзина 13 для шихты. Корзину с загруженной в неё шихтой опускают с помощью лебёдки 14 в тигель, после чего дно корзины открывается и шихта высыпается в тигель. Шихтовая камера 3 смонтирована на поворотной колонне 4, что позволяет отводить камеру 3 в сторону для удобства загрузки в неё корзины 13 с новой порцией шихты. Камера 3 отделена от ПЗК вакуумным технологическим затвором и соединена с вакуумной системой. Это позволяет производить загрузку шихты в тигель без нарушения вакуума в ПЗК.

Дозатор 6 предназначен для ввода в тигель различных твёрдых присадок во время плавки. Камера дозатора имеет несколько секций, в которые загружаются требуемые присадочные материалы. Из дозатора в тигель они переносятся специальным поворотным ковшом с откидным днищем. Так же, как шихтовая камера 3, дозатор 6 отделяется от ПЗК вакуумным затвором.

С ПЗК соединена камера 10 изложниц. От цеха и ПЗК она отделена технологическими вакуумными затворами 9 и соединена с вакуумной системой. Подача изложниц в камеру изложниц, а затем в ПЗК осуществляется на тележке 11. Следовательно, камера изложниц с вакуумными затворами выполняет роль шлюзовой камеры, обеспечивая сохранение вакуума в ПЗК при замене в ней изложниц. Заливка ЖМ в формы производится наклоном тигля с помощью электропривода. Остаточное давление в печи составляет 0,6 – 0,7 Па. Питание печи производится от тиристорного источника.

Свернуть

Индукционная печь — это печной аппарат, который применяется для плавления цветных (бронзы, алюминия, меди, золота и других) и черных (чугуна, стали и других) металлов за счет работы индуктора. В поле ее индуктора производится ток, он нагревает металл и доводит его до расплавленного состояния.

Вначале на него будет действовать электромагнитное поле, потом электрический ток, а затем уже он пройдет тепловую стадию. Простую конструкцию такого печного устройства можно собрать самостоятельно из различных подручных средств.

Принцип работы

Такое печное устройство является электрическим трансформатором со вторичной короткозамкнутой обмоткой. Принцип действия индукционной печи состоит в следующем:

  • при помощи генератора в индукторе создается переменный ток;
  • индуктор с конденсатором создает колебательный контур, он настроен на рабочую частоту;
  • в случае использования автоколебательного генератора, конденсатор исключается из схемы устройства и в этом случае используется собственный запас емкости индуктора;
  • создаваемое индуктором магнитное поле может существовать в свободном пространстве или же замыкаться с использованием индивидуального ферромагнитного сердечника;
  • магнитное поле воздействует на находящуюся в индукторе металлическую заготовку или шихту и образует магнитный поток;
  • по уравнениям Максвелла он индуцирует в заготовке вторичный ток;
  • при цельном и массивном магнитном потоке создаваемый ток замыкается в заготовке и происходит создание тока Фуко или вихревого тока;
  • после образования такого тока вступает в действие закон Джоуля-Ленца, и полученная с помощью индуктора и магнитного поля энергия нагревает заготовку металла или шихту.

Несмотря на многоступенчатую работу, устройство индукционной печи может давать в вакууме или воздухе до 100% КПД. Если среда с магнитной проницаемостью, то этот показатель будет расти, в случае со средой из неидеального диэлектрика, он будет падать.

Устройство

Рассматриваемая печь – своеобразный трансформатор, но только в нем нет вторичной обмотки, ее заменяет помещенный в индуктор металлический образец. Он будет проводить ток, а вот диэлектрики в этом процессе не нагреваются, они остаются холодными.

Конструкция индукционных тигельных печей включает в себя индуктор, который состоит из нескольких витков медной трубки, свернутой в виде катушки, внутри нее постоянно передвигается охлаждающая жидкость. Также индуктор вмещает в себе тигель, который может быть из графита, стали и других материалов.

Кроме индуктора в печи установлен магнитный сердечник и подовый камень, все это заключено в корпус печи. В него входят:


В моделях печей большой мощности кожух ванны обычно выполняется достаточно жестким, поэтому каркас в таком устройстве отсутствует. Крепление корпуса должно выдерживать сильные нагрузки при наклоне всей печи. Каркас чаще всего изготавливается из фасонных балок, выполненных из стали.

Тигельная индукционная печь для плавки металла устанавливается на фундамент, в который вмонтированы опоры, на их подшипники опираются цапфы механизма наклона устройства.

Кожух ванны выполняется из металлических листов, на которые для прочности наваривают ребра жесткости.

Кожух для индукционной единицы используется в качестве соединительного звена между печным трансформатором и подовым камнем. Его для уменьшения потерь тока делают из двух половинок, между которыми предусмотрена изолирующая прокладка.

Стяжка половинок происходит за счет болтов, шайб и втулок. Такой кожух делается литым или сварным, при выборе материала для него отдают предпочтение немагнитным сплавам. Двухкамерная индукционная сталеплавильная печь идет с общим кожухом для ванны и для индукционной единицы.

В небольших печах, в которых не предусмотрено водяного охлаждения имеется вентиляционная установка, она помогает отводить из агрегата излишки тепла. Даже вы случае установки водоохлаждаемого индуктора необходимо вентилировать проем, возле подового камня, чтобы он не перегревался.

В современных печных установках имеется не только водоохлаждаемый индуктор, но и предусмотрено водяное охлаждение кожухов. На каркасе печи могут быть установлены вентиляторы, работающие от приводного двигателя. При значительной массе такого устройства, вентиляционный прибор устанавливают возле печи. Если индукционная печь для производства стали идет со съемным вариантом индукционных единиц, то для каждой из них предусматривается свой вентилятор.

Отдельно стоит отметить механизм наклона, который для малых печей идет с ручным приводом, а для крупных он оснащен гидравлическим приводом, расположенным у сливного носика. Какой бы ни был установлен механизм наклона, он обязан обеспечивать слив полностью всего содержимого ванной.

Расчет мощности

Так как индукционный способ плавки стали менее затратный, чем аналогичных методик, основанных на использовании мазута, угля и других энергоносителей, то расчет индукционной печи начинается с вычисления мощности агрегата.

Мощность индукционной печи подразделяется на активную и полезную, для каждой из них есть своя формула.

В качестве исходных данных нужно знать:

  • емкость печи, в рассматриваемом для примера случае она равна 8 тоннам;
  • мощность агрегата (берется максимальное ее значение) – 1300 кВт;
  • частота тока – 50 Гц;
  • производительность печной установки – 6 тонн в час.

Требуется также учитывать расплавляемый металл или сплав: по условию он цинковый. Это важный момент, тепловой баланс плавки чугуна в индукционной печи, также как и других сплавов свой.

Полезная мощность, которая передается жидкому металлу:

  • Рпол = Wтеор×t×П,
  • Wтеор – удельный расход энергии, он теоретический, и показывает перегрев металла на 1 0 С;
  • П – производительность печной установки, т/ч;
  • t — температура перегрева сплава или металлической заготовки в ванной печи, 0 С
  • Рпол = 0,298×800×5,5 = 1430,4 кВт.

Активная мощность:

  • Р = Рпол/Ютерм,
  • Рпол – берется с предыдущей формулы, кВт;
  • Ютерм – КПД литейной печи, его пределы от 0,7 до 0,85, в среднем принимают 0,76.
  • Р =1311,2/0,76=1892,1кВт, проводится округление значения до 1900 кВт.

На заключительном этапе рассчитывается мощность индуктора:

  • Ринд = Р/N,
  • Р – активная мощность печной установки, кВт;
  • N – количество индукторов, предусмотренных на печи.
  • Ринд =1900/2= 950 кВт.

Потребление мощности индукционной печью при плавке стали зависит от ее производительности и вида индуктора.

Виды и подвиды

Индукционные печи делятся на два основных вида:

Кроме такого разделения, индукционные печи бывают компрессорными, вакуумными, открытыми и газонаполненными.

Индукционные печи своими руками

Среди имеющихся распространенных методик создания таких агрегатов можно найти пошаговое руководство, как сделать индукционную печь из сварочного инвертора, с нихромовой спиралью или графитовыми щетками, приведем их особенности.

Агрегат из высокочастотного генератора

Она выполняется с учетом расчетной мощности агрегата, вихревых потерь и утечек на гистерезисе. Питание конструкции будет идти от обычной сети в 220 В, но с использованием выпрямителя. Такой вид печи может идти с графитовыми щетками или нихромовой спиралью.

Для создания печи потребуется:

  • два диода UF4007;
  • пленочные конденсаторы;
  • полевые транзисторы в количестве двух штук;
  • резистор в 470 Ом;
  • два дроссельных кольца, их можно снять со старого компьютерного системщика;
  • медный провод Ø сечения 2 мм.

В качестве инструмента используется паяльник и плоскогубцы.

Приведем схему для индукционной печи:

Индукционные портативные плавильные печи такого плана создаются в следующей последовательности:

  1. Транзисторы располагаются на радиаторах. Из-за того, что в процессе плавки металла схема устройства быстро греется, радиатор для нее нужно подбирать с большими параметрами. Допустимо устанавливать несколько транзисторов на один генератор, но в этом случае их нужно изолировать от металла при помощи прокладок, сделанных из пластика и резины.
  2. Изготавливаются два дросселя. Для них берутся два заранее снятые с компьютера кольца, вокруг них обматывают медную проволоку, количество витков ограничено от 7 до 15.
  3. Конденсаторы объединяются между собой в батарею, чтобы на выходе получилась емкость в 4,7 мкФ, их соединение проводится параллельно.
  4. Вокруг индуктора обвивается медная проволока, ее диаметр должен быть 2 мм. Внутренний диаметр обмотки должен совпадать с размером используемого для печи тигля. Всего делают 7-8 витков и оставляют длинные концы, чтобы их можно было подключить к схеме.
  5. В качестве источника к собранной схеме подсоединяется аккумулятор мощностью 12 В, его хватает примерно на 40 минут работы печи.

Если необходимо, то делается корпус из материала с высокой термоустойчивостью. Если же выполняется индукционная плавильная печь из сварочного инвертора, то защитный корпус должен быть обязательно, но его нужно заземлить.

Конструкция с графитовыми щетками

Такая печь используется для выплавки любого металла и сплавов.

Для создания устройства необходимо заготовить:

  • графитовые щетки;
  • порошковый гранит;
  • трансформатор;
  • шамотный кирпич;
  • стальная проволока;
  • тонкий алюминий.

Технология сборки конструкции заключается в следующем:


Прибор с нихромовой спиралью

Такой прибор используется для выплавки больших объемов металла.

В качестве расходных материалов для обустройства самодельной печи используется:

  • нихром;
  • асбестовая нить;
  • кусок керамической трубы.

После подключения всех составляющих печи по схеме, ее работа состоит в следующем: после подачи электрического тока на нихромовую спираль, она передает тепло металлу и плавит его.

Создание такой печи проводится в следующей последовательности:


Такая конструкция отличается высокой производительностью, она долго остывает и быстро нагревается. Но необходимо учесть, что если спираль будет плохо изолирована, то она быстро перегорит.

Цены на готовые индукционные печи

Самодельные конструкции печей будут стоить гораздо дешевле покупных, но их нельзя создать большими объемами, поэтому без готовых вариантов для массового производства расплава не обойтись.

Цены на индукционные печи для плавки металла зависят от их вместимости и комплектации.

Модель Характеристики и особенности Цена, рубли
INDUTHERM MU-200 Печь поддерживает 16 температурных программ, максимальная температура нагрева – 1400 0С, контроль за режимом осуществляется с термопарой типа S. Агрегат производит мощность 3,5 кВт. 820 тыс.
INDUTHERM MU-900
Печь работает от электропитания в 380 Вт, температурный контроль происходит с помощью термопары типа S и может доходить до 1500 0С. Мощность – 15 кВт. 1,7 млн.
УПИ-60-2

Эта индукционная плавильная мини-печь может использоваться для плавки цветных и драгоценных металлов. Заготовки загружаются в графитовый тигель, их нагрев ведется по принципу трансформатора. 125 тыс.
ИСТ-1/0,8 М5
Индуктор печи представляет собой корзину, в которую встроен магнитопровод совместно с катушкой. Агрегат 1 тонну. 1,7 млн.
УИ-25П
Печное устройство рассчитано на загрузку в 20 кг, он оснащен редукторным наклоном плавильного узла. В комплекте к печи идет блок конденсаторных батарей. Мощность установки – 25 кВт. Максимальная t нагрева – 1600 0С. 470 тыс.
УИ-0,50Т-400
Агрегат рассчитан на загрузку в 500 кг, самая большая мощность установки – 525 кВт, напряжение для него должно быть не ниже 380Вт, максимальная рабочая t – 1850 0С. 900 тыс.
ST 10
Печь итальянской компании оснащена цифровым термостатом, в панель управления встроена технология SMD, которая отличается быстродействием. Универсальный агрегат может работать с разной вместительностью от 1 до 3 кг, для этого ее не нужно переналаживать. Она предназначена для драгоценных металлов, ее max температура – 1250 0С. 1 млн.
ST 12 Статическая индукционная печь с цифровым термостатом. Она может быть дополнена вакуумной литьевой камерой, что дает возможность производить литье прямо рядом с установкой. Управление происходит с помощью сенсорной панели. Максимальная температура – 1250 0С. 1050 тыс.
ИЧТ-10ТН Печь рассчитана на загрузку в 10 тонн, довольно объемный агрегат, для его установки нужно выделить закрытое цеховое помещение. 8,9 млн.