Ик излучение свойства. В домашних условиях. Эффективность инфракрасного излучения в лечении человека

Во все времена инфракрасное излучение окружало человека. До наступления технологического прогресса лучи солнца обеспечивали влияние на человеческий организм, а с появлением бытовой техники, инфракрасное излучение оказывает воздействие и в домашних условиях. Терапевтическое прогревание тканей организма с успехом используется в медицине для физиотерапевтического лечения различных патологий.

Свойства инфракрасного излучения были давно изучены учеными физиками и направлены на получение максимальной выгоды и пользы для человека. Все параметры вредного воздействия были учтены и рекомендованы способы защиты для сохранения здоровья человека.

Инфракрасные лучи: что это?

Невидимое электромагнитное излучение, обеспечивающее сильный тепловой эффект, называется инфракрасным. Длина лучей составляет от 0,74 до 2000 мкм, что находится между микроволновым радиоизлучением и видимыми красными лучами, которые являются самыми длинными в спектре солнца.

Еще в 1800 году астроном из Великобритании Уильям Гершель открыл электромагнитное излучение. Случилось это во время изучения лучей солнца: ученый заметил значительное нагревание приборов и смог дифференцировать невидимое излучение.

У инфракрасного излучения есть второе название – «тепловое». От предметов, способных поддерживать температуру, исходит тепло. Короткие инфракрасные волны греют сильнее, а если тепло ощущается слабое, значит, от поверхности исходят волны с дальним диапазоном. Длина волны инфракрасного излучения бывает трех видов:

  • короткая или ближняя до 2,5 мкм;
  • средняя не более 50 мкм;
  • длинная или дальняя 50–2000 мкм.

Любое тело, которое предварительно нагрелось, испускает инфракрасные лучи, выделяя при этом тепловую энергию. Самым известным природным источником тепла является солнце, а к искусственным можно отнести электрические лампы, бытовую технику, радиаторы, при работе которых выделяется тепло.

Где применяется инфракрасное излучение?

Каждое новое открытие находит свое применение, с извлечением наибольшей пользы для человечества. Открытие инфракрасных лучей помогло справиться со многими проблемами в разных областях от медицины до производственных масштабов.

Самые известные области, где используются свойства невидимых лучей:

  1. С помощью специальных приборов, тепловизоров, можно обнаружить объект на удаленном расстоянии, используя свойства инфракрасного излучения. Любой предмет, способный удерживать температуру на своей поверхности, тем самым обладая выделением инфракрасных лучей. Термографическая камера распознает тепловые лучи и создает точное изображение обнаруживаемого предмета. Данное свойство может использоваться в промышленности и в военной практике.
  2. Для проведения процедуры слежения в военной практике применяются приборы с датчиками, способными определять цель, которая излучает тепло. Кроме того, передается что именно находится в ближайшем окружении, чтобы правильно рассчитать не только траекторию, но и силу удара, чаще всего ракеты.
  3. Активная отдача тепла вместе с лучами применяется в бытовых условиях, используя полезные свойства для обогрева помещения в холодное время года. Радиаторы изготавливаются из металла, который способен передать наибольшее количество тепловой энергии. Такое же действие и у обогревателей. Некоторые бытовые приборы: телевизоры, пылесосы, печи, утюги обладают теми же свойствами.
  4. В промышленности процесс сварки пластмассовых изделий, отжиг осуществляется при помощи инфракрасного излучения.
  5. Инфракрасное облучение применяется в медицинской практике для лечения теплом некоторых патологий, а также для обеззараживания воздуха в помещении с помощью кварцевых ламп.
  6. Составление метеорологических карт невозможно без специальных приборов с датчиками теплового обнаружения, которые с легкостью определяют движение теплого и холодного воздуха.
  7. Для астрономических исследований изготавливаются специальные телескопы, чувствительные к инфракрасным лучам, которым под силу обнаружить космические предметы с разной температурой на поверхности.
  8. В пищевой промышленности для термической обработки круп.
  9. Для проверки денежных купюр используется приборы с инфракрасным излучением, при свете которых можно распознать фальшивые банкноты.

Влияние инфракрасного излучения на организм человека неоднозначно. Разная длина волны способна запустить непредсказуемые реакции. Особенно внимательно нужно относиться к солнечному теплу, которое может нанести вред и стать провоцирующим фактором для запуска негативных патологических процессов в клетках.

Лучи с длинными волнами попадают на кожу и активируют тепловые рецепторы, передавая им приятное тепло. Именно данный диапазон частот активно используется для лечебного воздействия в медицине. Большая часть тепла адсорбируется кожей, попадая на ее поверхность. Слабое воздействие гарантирует приятный нагрев поверхности кожи, не затрагивая внутренних органов.

Волны с длиной волны 9,6 мкм способствуют обновлению эпидермиса, укрепляют иммунитет, оздоравливает организм. Физиотерапия основана на использовании длинных инфракрасных волн, запуская следующие процессы:

  • улучшается кровообращение при расслаблении гладкой мускулатуры после передачи информации в гипоталамус при воздействии на поверхностный слой кожи;
  • нормализуется кровяное давление после расширения сосудов;
  • клетки организма в большей степени снабжаются питательными веществами и кислородом, что улучшает общее состояние;
  • биохимические реакции протекают быстрее, что влияет на процесс обмена веществ;
  • улучшается иммунитет и повышается сопротивляемость организма к патогенным микроорганизмам;
  • ускорение метаболизма помогает вывести токсические вещества и уменьшить зашлакованность.

Патологическое влияние

Противоположное действие оказывают волны с короткой длиной волны. Вред инфракрасного излучения обусловлен интенсивным тепловым эффектом, который вызывают короткие лучи. Сильный тепловой эффект распространяется вглубь тела, вызывая нагревание внутренних органов. Перегревание тканей приводит к обезвоживанию и значительному повышению температуры тела.

Кожные покровы в месте попадания инфракрасных лучей малой длины краснеют и получают термический ожог, иногда второй степени тяжести с появлением волдырей с мутным содержимым. Капилляры на месте поражения расширяются и лопаются, приводя к мелким кровоизлияниям.

Клетки теряют влагу, организм становится ослабленным и подвержен заболеванию инфекциями разного характера. Если инфракрасное излучение попадает в глаза, данный факт оказывает разрушительное действие на зрение. Слизистая глаза становится сухой, сетчатка подвергается негативному влиянию. Хрусталик теряет свою эластичность и прозрачность, что является одним из симптомов катаракты.

Превышение теплового воздействия вызывает усиление воспалительных процессов, если таковые имеются, а также служат благоприятной почвой для возникновения воспаления. Медики утверждают, что превышение температуры на пару градусов может спровоцировать заражение менингитом.

Общее повышение температуры тела приводит к тепловому удару, которое при неоказании помощи может приводить к необратимым последствиям. Основные признаки теплового удара:

  • общая слабость;
  • сильная головная боль;
  • помутнение в глазах;
  • тошнота;
  • учащение сердечных сокращений;
  • появление холодного пота на спине;
  • кратковременная потеря сознания.

Грозное осложнение, связанное с нарушением терморегуляции, возникает, если частота воздействия инфракрасного излучения продолжается длительно. Если человеку не оказать своевременную помощь, клетки головного мозга видоизменяются, а деятельность кровеносной системы угнетается.

Список мероприятий в первые минуты после проявления тревожных симптомов:

  1. Устранить от пострадавшего источник инфракрасного излучения: перенести человека в тень или в место, отдаленное от источника вредного тепла.
  2. Расстегнуть или снять одежду, мешающую глубокому свободному дыханию.
  3. Открыть окно для беспрепятственного прохождения свежего воздуха.
  4. Обтереть прохладной водой или обернуть в мокрую простыню.
  5. На места, где находятся крупные артерии (височная, паховая область, лоб, подмышечные впадины) положить холод.
  6. Если человек находится в сознании, нужно дать выпить прохладной чистой воды, эта мера снизит температуру тела.
  7. При потере сознания следует провести реанимационный комплекс, состоящий из искусственного дыхания и непрямого массажа сердца.
  8. Вызвать бригаду скорой помощи для получения квалифицированной медицинской помощи.

Показания

Для лечебных целей в медицинской практике широко применяется использование длинной тепловой волны. Список заболеваний достаточно велик:

  • повышенное артериальное давление;
  • болевой синдром;
  • поможет убрать лишние килограммы;
  • заболевания желудка и двенадцатиперстной кишки;
  • депрессивные состояния;
  • респираторные заболевания;
  • кожные патологии;
  • ринит, неосложненный отит.

Противопоказания к применению инфракрасного излучения

Польза инфракрасного излучения ценна для человека при отсутствии патологий или отдельных симптомов, при которых недопустимо воздействие инфракрасных лучей:

  • системные заболевания крови, склонность к частым кровотечениям;
  • острые и хронические воспалительные заболевания;
  • наличие гнойной инфекции в организме;
  • злокачественные новообразования;
  • сердечная недостаточность в стадии декомпенсации;
  • беременность;
  • эпилепсия и другие тяжелые неврологические расстройства;
  • детский возраст до трех лет.

Меры защиты от вредных лучей

В зону риска получить коротковолновое инфракрасное излучение входят любители долго проводить время под палящим солнцем, рабочие цехов, где применяются свойства тепловых лучей. Чтобы обезопасить себя, необходимо соблюдать простые рекомендации:

  1. Любителям красивого загара сократить время пребывания на солнце, перед выходом на улицу открытые участки кожи смазывать защитным кремом.
  2. Если рядом находится источник сильного тепла, уменьшить интенсивность нагревания.
  3. При работе в цехах с высокой температурой, работники должны быть снабжены средствами личной защиты: специальная одежда, головные уборы.
  4. Время пребывания в помещениях с высокой температурой должно быть строго регламентировано.
  5. При проведении процедур надевать защитные очки для сохранения здоровья глаз.
  6. В комнатах устанавливать только качественную бытовую технику.

Различные виды излучений окружают человека на улице и в помещениях. Осведомленность о возможных негативных последствиях поможет сохранить здоровье в будущем. Ценность инфракрасного излучения неоспорима для улучшения жизнедеятельности человека, но существует и патологическое влияние, которое нужно ликвидировать, соблюдая нехитрые рекомендации.

В различных сферах жизни человек использует инфракрасные лучи. Польза и вред излучения зависят от длины волны и времени воздействия.

В повседневной жизни человек постоянно находится под действием инфракрасного излучения (ИК-излучение). Естественным его источником является солнце. К искусственным относятся электронагревательные элементы и лампы накаливания, любые нагретые или раскаленные тела. Этот вид излучения используется в обогревателях, системах отопления, приборах ночного видения, пультах дистанционного управления. На ИК-излучении основан принцип действия медицинского оборудования для физиотерапии. Что же собой представляют инфракрасные лучи? В чем польза и вред этого вида излучения?

Что такое ИК-излучение

ИК-излучение - это электромагнитное излучение , форма энергии, которая нагревает предметы и примыкает к красному спектру видимого света. Глаз человека не видит в этом спектре, но мы чувствуем эту энергию как высокую температуру. Другими словами, люди кожей воспринимают инфракрасное излучение от нагретых предметов как ощущение тепла.

Инфракрасные лучи бывают коротковолновыми, средневолновыми и длинноволновыми. Длины волн, излучаемые нагретым предметом, зависят от температуры нагревания. Чем она выше, тем короче длина волны и интенсивнее излучение.

Впервые биологическое действие этого вида излучения было изучено на примере культур клеток, растений, животных. Обнаружено, что под влиянием ИК-лучей подавляется развитие микрофлоры, улучшаются обменные процессы вследствие активизации кровотока. Доказано, что это излучение улучшает циркуляцию крови и оказывает болеутоляющее и противовоспалительное действие. Отмечено, что под влиянием инфракрасного излучения пациенты после хирургического вмешательства легче переносят послеоперационные боли, а их раны быстрее заживают. Установлено, что ИК-излучение способствует повышению неспецифического иммунитета, что позволяет уменьшить действие ядохимикатов и гамма-излучения, а также ускоряет процесс выздоровления при гриппе. ИК-лучи стимулируют выведение из организма холестерина, шлаков, токсинов и других вредных веществ через пот и мочу.

Польза инфракрасных лучей

Благодаря этим свойствам ИК-излучение широко используется в медицине. Но применение ИК-излучений с широким спектром действия может привести к перегреву организма и покраснению кожи. Вместе с тем, длинноволновое излучение не оказывает негативного влияния, поэтому в быту и медицине более распространены длинноволновые приборы или излучатели с селективной длиной волны.

Воздействием длинноволновых ИК-лучей способствует следующим процессам в организме:

  • Нормализация артериального давления за счет стимуляции кровообращения
  • Улучшение мозгового кровообращения и памяти
  • Очищение организма от токсинов, солей тяжелых металлов
  • Нормализация гормонального фона
  • Прекращение распространения вредных микробов и грибков
  • Восстановление водно-солевого баланса
  • Обезболивание и противовоспалительный эффект
  • Укрепление иммунной системы.

Лечебное воздействие ИК-лучей может использоваться при следующих заболеваниях и состояниях:

  • бронхиальная астма и обострение хронического бронхита
  • очаговая пневмония в стадии разрешения
  • хронический гастродуоденит
  • гипермоторная дискинезия органов пищеварения
  • хронический бескаменный холецистит
  • остеохондроз позвоночника с неврологическими проявлениями
  • ревматоидный артрит в ремиссии
  • обострение деформирующего остеоартроза тазобедренного и коленного суставов
  • облитерирующий атеросклероз сосудов ног, невропатии периферических нервов ног
  • обострение хронического цистита
  • мочекаменная болезнь
  • обострение хронического простатита с нарушением потенции
  • инфекционные, алкогольные, диабетические полиневропатии ног
  • хронический аднексит и нарушения функции яичников
  • абстинентный синдром

Отопление с использованием ИК-излучения способствует укреплению иммунной системы, подавляет размножение бактерий в окружающей среде и в человеческом организме, улучшает состояние кожи за счет усиления циркуляции крови в ней. Ионизирование воздуха является профилактикой обострений аллергии.

Когда ИК-излучение может навредить

Прежде всего, нужно учесть существующие противопоказания, прежде чем в лечебных целях использовать инфракрасные лучи. Вред от их применения может быть в следующих случаях:

  • Острые гнойные заболевания
  • Кровотечения
  • Острые воспалительные заболевания, приведшие к декомпенсации органов и систем
  • Системные заболевания крови
  • Злокачественные новообразования

Кроме того, чрезмерное облучение широким спектром ИК-лучей приводит к сильному покраснению кожи и может вызвать ожог. Известно о случаях появления опухоли на лице у рабочих-металлургов в результате длительного воздействия этого вида излучения. Также отмечены случаи появления дерматита, возникновения теплового удара.

Инфракрасные лучи, особенно в интервале 0,76 - 1,5 мкм (коротковолновая область) представляют опасность для глаз. Продолжительное и длительное воздействие излучения чревато развитием катаракты, светобоязни и других нарушений зрения. По этой причине нежелательно длительно находиться под воздействием коротковолновых обогревателей. Чем ближе к такому обогревателю находится человек, тем меньше должно быть время, которое он проводит возле этого прибора. Нужно отметить, что этот тип обогревателей предназначен для уличного или локального обогрева. Для отопления жилых и производственных помещений, предназначенных для длительного пребывания людей, используются длинноволновые ИК-обогреватели.

> Инфракрасные волны

Что такое инфракрасные волны : длина волны инфракрасного излучения, диапазон инфракрасных волн и частота. Изучите схемы инфракрасного спектра и источники.

Инфракрасный свет (ИК) – электромагнитные лучи, которые по показателю длин волн превышает видимый (0.74-1 мм).

Задача обучения

  • Разобраться в трех диапазонах ИК-спектра и описать процессы поглощения и излучения молекулами.

Основные моменты

  • ИК-свет вмещает большую часть теплового излучения, создаваемого телами примерно комнатной температуры. Излучается и поглощается, если во вращении и колебании молекул происходят изменения.
  • ИК часть спектра можно разбить на три области по длине волн: дальний инфракрасный (300-30 ТГц), средний (30-120 ТГц) и ближний (120-400 ТГц).
  • ИК также именуют тепловым излучением.
  • Важно разобраться в концепции излучательной способности, чтобы понять ИК.
  • ИК-лучи можно применить для дистанционного определения температуры объектов (термография).

Термины

  • Термография – дистанционное вычисление перемен температуры тела.
  • Тепловая радиация – электромагнитное излучение, создаваемое телом из-за температуры.
  • Излучательная способность – умение поверхности излучать.

Инфракрасные волны

Инфракрасный (ИК) свет – электромагнитные лучи, которые по показателю длин волн превосходят видимый свет (0.74-1 мм). Диапазон инфракрасных волн сходится с диапазоном частот 300-400 ТГц и вмещает огромное количество теплового излучения. ИК-свет поглощается и излучается молекулами при изменении во вращении и колебаниях.

Перед вами главные категории электромагнитных волн. Разделительные линии в некоторых местах отличаются, а другие категории могут перекрываться. Микроволны занимают высокочастотный участок радиосекции электромагнитного спектра

Подкатегории ИК-волн

ИК-часть электромагнитного спектра занимает диапазон от 300 ГГц (1 мм) до 400 ТГц (750 нм). Можно выделить три вида инфракрасных волн:

  • Дальний ИК-диапазон: 300 ГГц (1 мм) до 30 ТГц (10 мкм). Нижнюю часть можно именовать микроволнами. Эти лучи поглощаются из-за вращения в газофазных молекулах, молекулярных движениях в жидкостях и фотонов в твердых телах. Вода в земной атмосфере так сильно поглощается, что делает ее непрозрачной. Но есть определенные длины волн (окна), используемые для пропускания.
  • Средний ИК-диапазон: 30 до 120 ТГц (от 10 до 2.5 мкм). Источниками выступают горячие объекты. Поглощается колебаниями молекул (разнообразные атомы вибрируют в позициях равновесия). Иногда этот диапазон именуют отпечатком пальца, потому что это специфическое явление.
  • Ближайший ИК-диапазон: 120 до 400 TГц (2500-750 нм). Эти физические процессы напоминают те, что происходят в видимом свете. Наиболее высокие частоты можно найти определенной разновидностью фотографической пленки и датчиками для инфракрасной, фото- и видеосъемки.

Тепло и тепловое излучение

Инфракрасное излучение именуют также тепловым. ИК-свет от Солнца охватывает всего 49% земного нагрева, а все остальное – видимый свет (поглощается и повторно отбивается на более длинных волнах).

Тепло – энергия в переходной форме, которая течет из-за разницы в температурных показателях. Если тепло передается теплопроводностью или конвекцией, то излучение способно распространяться в вакууме.

Чтобы разобраться в ИК-лучах, следует внимательно рассмотреть концепцию излучательной способности.

Источники ИК-волн

Люди и большая часть планетарного окружения создают тепловые лучи на 10 мкм. Это граница, отделяющая среднюю и дальнюю ИК-области. Многие астрономические тела испускают улавливаемое количество ИК-лучей на нетепловых длинах волн.

ИК-лучи можно использовать, чтобы вычислять температурные показатели объектов на расстоянии. Этот процесс именуют термографией и активнее всего используют в военном и промышленном употреблении.


Термографическое изображение собаки и кошки

ИК-волны также используют в отоплении, связи, метеорологии, спектроскопии, астрономии, биологии и медицине, а также анализе произведений искусства.

Свет – это залог существования живых организмов на Земле. Существует огромное количество процессов, которые могут протекать благодаря воздействию инфракрасного излучения. Помимо этого, его применяют в лечебных целях. С ХХ века терапия светом стала значимой составляющей традиционной медицины.

Особенности излучения

Фототерапия – это специальный раздел в физиотерапии, занимающийся изучением воздействия волны световой на организм человека. Было отмечено, что волны имеют различный диапазон, поэтому они по-разному сказываются на человеческом организме. Важно отметить, излучение владеет самой большой глубиной проникновения. Что касается поверхностного влияния, то им обладает ультрафиолет.

Диапазон инфракрасного спектра (спектр излучения) имеет соответствующую длину своей волны, а именно 780 нм. до 10000 нм. Что касается физиотерапии, то для лечения человека применяется длина волны, которая колеблется в спектре от 780 нм. до 1400 нм. Данный диапазон инфракрасного излучения считается нормой для терапии. Простыми словами, применяется соответствующая длина волны, а именно более короткая, способная проникать в кожу на три сантиметра. Помимо этого, учитывается специальная энергия кванта, частота излучений.

Согласно многим исследованиям, было установлено, что свет, радиоволны, лучи инфракрасные, обладают одной природой, так как это разновидности электромагнитной волны, которая окружает людей повсюду. Подобные волны обеспечивают работу телевизоров, мобильных телефонов и радио. Простыми словами, волны позволяют человеку увидеть окружающий мир.

Инфракрасный спектр имеет соответствующую частоту, длина волны которой 7-14 мкм, что оказывает уникальное воздействие на организм человека. Данная часть спектра соответствует излучениям человеческого тела.

Что касается объектов кванта, то молекулы не имеют возможности произвольно колебаться. Каждая молекула кванта обладает определенным комплексом энергии, частот излучений, которыми запасаются в момент колебаний. Однако стоит учесть, что молекулы воздуха оснащены обширным набором таких частот, поэтому атмосфера способна поглощать излучение в разнообразных спектрах.

Источники излучения

Солнце является основным источником ИК.

Благодаря ему предметы могут нагреваться до конкретной температуры. В итоге осуществляется излучение тепловой энергии в спектре данных волн. Затем энергия доходит к объектам. Процесс передачи тепловой энергии осуществляется от предметов с высокой температурой к более низкой. В этой ситуации у объектов присутствуют различные излучающие свойства, имеющие зависимость от нескольких тел.

Источники инфракрасного излучения присутствуют повсюду, они оснащенными такими элементами, как светодиоды. Все современные телевизоры оснащены пультами, работающими на дистанционном управлении, так как он функционирует в соответствующей частоте инфракрасного спектра. В их составе имеются светодиоды. Различные источники инфракрасного излучения можно увидеть на промышленных производствах, например: в сушке лакокрасочных поверхностей.

Самым ярким представителем искусственного источника на Руси являлись русские печи. Практически все люди испытали на себе влияние подобной печи, а также оценили ее пользу. Именно поэтому от нагретой печи или же радиатора отопления можно почувствовать такое излучение. В настоящее время огромной популярностью пользуются обогреватели инфракрасные. Они обладают перечнем преимуществ по сравнению с конвекционным вариантом, так как более экономичны.

Значение коэффициента

В инфракрасном спектре имеется несколько разновидностей коэффициента, а именно:

  • излучения;
  • коэффициент отражения;
  • пропускной коэффициент.

Итак, коэффициент излучения является способностью объектов излучать частоту излучений, а также энергию кванта. Может меняться в соответствии с материалом и его свойствами, а также температуры. Коэффициент имеет такое максимальное излечение = 1, но в реальной ситуации он всегда меньше. Что касается низкой способности излучения, то ею наделены элементы, имеющие блестящую поверхность, а также металлы. Коэффициент зависит от температурных показателей.

Коэффициент отражения дает увидеть возможность материалов отражать частоту изучений. Зависит от типа материалов, свойств и температурных показателей. В основном отражение имеется у полированных и гладких поверхностей.

Коэффициент пропускания показывает способность предметов проводить сквозь себя частоту инфракрасного излучения. Подобный коэффициент напрямую зависит от толщины и разновидности материала. Важно заметить, что большая часть материалов не имеет такой коэффициент.

Использование в медицине

Световое лечение инфракрасным излучением стало достаточно популярным в современном мире. Применение инфракрасного излучения в медицине обусловлено тем, что методика имеет лечебные свойства. Благодаря этому, наблюдается благотворное влияние на организм человека. Тепловое влияние образует в тканях тело, регенерирует ткани и стимулирует репарацию, ускоряет физико-химические реакции.

Помимо этого, организм испытывает значительные улучшения, так как происходят такие процессы:

  • ускорение кровотока;
  • расширение сосудов;
  • выработка биологически активных веществ;
  • мышечная релаксация;
  • прекрасное настроение;
  • комфортное состояние;
  • хороший сон;
  • снижение давления;
  • снятие физического, психоэмоционального перенапряжения и прочее.

Видимый эффект от лечения наступает в течение нескольких процедур. Помимо отмеченных функций, инфракрасный спектр оказывает противовоспалительное влияние на организм человека, помогает бороться с инфекцией, стимулирует и укрепляет иммунную систему.

Подобная терапия в медицине имеет следующие свойства:

  • биостимулирующее;
  • противовоспалительное;
  • дезинтоксикационное;
  • улучшение кровотока;
  • пробуждение второстепенных функций организма.

Инфракрасное световое излучения, а точнее лечение им, имеет видимую пользу для человеческого организма.

Лечебные методики

Терапия бывает двух видов, а именно – общая, местная. Что касается местного воздействия, то лечение осуществляется на определенной части тела больного. Во время общей терапии, применение световой терапии рассчитано на весь организм.

Процедура осуществляется дважды в день, продолжительность сеанса колеблется в пределах 15-30 минут. Общий лечебный курс содержит не менее пяти – двадцати процедур. Следите за тем, чтобы была готова защита от инфракрасного излучения, предназначенная для области лица. Для глаз предназначены специальные очки, вата или же картонные накладки. После проведения сеанса, кожа покрывается эритемой, а именно – покраснениями, имеющими размытые границы. Эритема исчезает через час после процедуры.

Показания и противопоказания к лечению

ИК имеет основные показания к применению в медицине:

  • болезни лор-органов;
  • невралгия и неврит;
  • заболевания, затрагивающие опорно-двигательный аппарат;
  • патология глаз и суставов;
  • воспалительные процессы;
  • раны;
  • ожоги, язвы, дерматозы и рубцы;
  • астма бронхиальная;
  • цистит;
  • болезнь мочекаменная;
  • остеохондроз;
  • холецистит без камней;
  • артрит;
  • гастродуоденит в хронической форме;
  • пневмония.

Световое лечение имеет положительные результаты. Помимо лечебного эффекта, ИК может быть опасно для человеческого организма. Это обусловлено тем, что имеются определенные противопоказания, не соблюдая которые можно нанести вред здоровью.

Если имеются следующие недуги, то подобное лечение принесет вред:

  • период беременности;
  • болезни крови;
  • индивидуальная непереносимость;
  • хронические болезни в острой стадии;
  • гнойные процессы;
  • туберкулез активной формы;
  • предрасположенность к кровотечениям;
  • новообразования.

Следует учитывать указанные противопоказания, чтобы не причинить вреда собственному здоровью. Слишком высокая интенсивность излучения способна причинить огромный вред.

Что касается вреда ИК в медицине и на производстве, то может возникнуть ожог и сильнейшее покраснение кожного покрова. В некоторых случаях у людей возникали опухоли на лице, так как они контактировали с данным излучением достаточно долго. Существенный вред инфракрасного излучения может вылиться в форме дерматитов, а также бывает тепловой удар.

Инфракрасные лучи достаточно опасны для глаз, особенно в диапазоне до 1,5 мкм. Длительное воздействие оказывает существенный вред, так как появляется светобоязнь, катаракта, проблемы со зрением. Длительное влияние ИК – очень опасно не только для людей, но для растений. Используя оптические приборы, можно постараться исправить проблему со зрением.

Воздействие на растения

Всем известно, что ИК оказывают благотворное влияние на рост, развитие растений. Например, если обустроить теплицу обогревателем с ИК, то можно увидеть ошеломляющий результат. Обогрев осуществляется в инфракрасном спектре, где соблюдается определенная частота, а волна равна от 50 000 нм. до 2 000 000 нм.

Существуют достаточно интересные факты, согласно которым можно узнать, что все растения, живые организмы, подвергаются влиянию солнечного света. Радиация солнца имеет определенный диапазон, состоящий из 290 нм. – 3000 нм. Простыми словами, лучистая энергия оказывает важную роль в жизни каждого растения.

Учитывая интересные и познавательные факты, можно определить, что растения нуждаются в свете и солнечной энергии, так как они отвечают за формирование хлорофилла и хлоропластов. Скорость света влияет на растяжение, зарождение клеток и ростовых процессов, сроки плодоношения и цветения.

Специфика микроволновой печи

Бытовые микроволновые печи оснащены микроволнами, показатели которых немного ниже гамма и рентгеновских лучей. Такие печи способны спровоцировать ионизирующий эффект, который несет опасность человеческому здоровью. Микроволны расположились в промежутке между инфракрасными и радиоволнами, поэтому такие печи не могут ионизировать молекулы, атомы. Исправные СВЧ-печи не оказывают воздействия на людей, так как они впитываются в пищу, образуя тепло.

СВЧ-печи – не могут излучать радиоактивных частиц, поэтому не оказывают радиоактивного влияния на пищу и живые организмы. Именно поэтому не стоит переживать, что микроволновые печи способны навредить вашему здоровью!

Инфракрасное излучение (ИК ) - это электромагнитное излучение с большей длиной волны, чем видимый свет , простирающийся от номинального красного края видимого спектра на 0,74 мкм (микрон) до 300 мкм. Этот диапазон длин волн соответствует частоте диапазона примерно от 1 до 400 ТГц, и включает в себя большую часть теплового излучения, испускаемого объектами вблизи комнатной температуры. Инфракрасное излучение испускается или поглощается молекулами, когда они меняют свои вращательно-колебательные движения . Наличие инфракрасного излучения было впервые обнаружено в 1800 году астрономом Уильямом Гершелем.


Большая часть энергии от Солнца поступает на Землю в виде инфракрасного излучения. Солнечный свет в зените обеспечивает освещённость чуть более 1 киловатта на квадратный метр над уровнем моря. Из этой энергии, 527 ватт инфракрасного излучения, 445 Вт является видимым светом, и 32 ватта ультрафиолетовым излучением.

Инфракрасный свет используется в промышленных, научных и медицинских нуждах. Приборы ночного видения с помощью инфракрасной подсветки позволяют людям наблюдать за животными, которые невозможно заметить в темноте. В астрономии изображение в инфракрасном диапазоне позволяет наблюдать объекты скрытые межзвездной пылью. Инфракрасные камеры используются для обнаружения потери тепла в изолированных системах, наблюдать изменение кровотока в коже, а также для обнаружения перегрева электрооборудования.

Сравнение света

Название

Длина волны

Частота (Гц)

Энергия фотона (эВ)





Гамма лучи

менее 0,01 нм

более чем на 10 EHZ

124 кэВ - 300 + ГэВ





Рентгеновые лучи

0,01 нм до 10 нм

124 эВ до 124 кэВ





Ультрафиолетовые лучи

10 нм - 380 нм

30 PHZ - 790 ТГц

3,3 эВ до 124 эВ





Видимый свет

380 нм - 750 нм

790 ТГц - 405 ТГц

1,7 эВ - 3,3 эВ





Инфракрасное излучение

750 нм - 1 мм

405 ТГц - 300 ГГц

1,24 мэВ - 1,7 эВ





Микроволны

1 мм - 1 метр

300 ГГц - 300 МГц

1,24 мкэВ - 1,24 мэВ





1 мм - 100 км

300 ГГц - 3 Гц

12,4 фэВ - 1,24 мэВ





Инфракрасные изображения широко используются для военных и гражданских целей. Военные применения включают в себя такие цели как наблюдение, ночное наблюдение, наведение и слежение. Не для военного применения включают тепловую эффективность анализа, мониторинга окружающей среды, промышленной инспекции объектов, дистанционное зондирование температуры, короткодействующую беспроводную связь, спектроскопию и прогноз погоды. Инфракрасная астрономия использует датчик оборудованный телескопами для того, чтобы проникнуть в пыльные области пространства, такие как молекулярные облака, и обнаруживать объекты, такие как планеты .

Хотя ближневолновая инфракрасная область спектра (780-1000 нм) уже давно считается невозможной из-за шума в зрительных пигментах, ощущение ближнего инфракрасного света сохранилось у карпа и в трех видах циклид. Рыбы используют ближневолновую инфракрасную область спектра, чтобы захватить добычу и для фототактической ориентации во время плавания. Ближневолновая инфракрасная область спектра для рыбы может быть полезна в условиях плохой освещенности в сумерках и в мутных поверхностях воды.

Фотомодуляция

Ближний инфракрасный свет, или фотомодуляция, используется для лечения химиотерапией индуцированных язв, а также заживления ран. Существует ряд работ, связанных с лечением вируса герпеса. Исследовательские проекты включают в себя работу над изучением центральной нервной системы и лечебным воздействием через регуляцию цитохром и оксидаз и другие возможные механизмы.

Опасность для здоровья

Сильное инфракрасное излучение в определенной отрасли и режиме высоких температур может быть опасно для глаз, в результате может привести к повреждению зрения или слепоте по отношению к пользователю. Поскольку излучение невидимо, необходимо надевать специальные инфракрасные очки в таких местах.

Земля как инфракрасный излучатель

Поверхность Земли и облака поглощают видимое и невидимое излучение от солнца и вновь возвращают большую часть энергии в виде инфракрасного излучения обратно в атмосферу. Некоторые вещества в атмосфере, главным образом, капли облаков и водяные пары, а также диоксид углерода, метан, окись азота, гексафторид серы и хлорфторуглерод поглощают инфракрасное излучение, и вновь возвращают его во всех направлениях, включая обратно на Землю. Таким образом, парниковый эффект сохраняет атмосферу и поверхность гораздо теплее, чем если бы инфракрасные амортизаторы отсутствовали в атмосфере.

История науки об инфракрасном излучении

Открытие инфракрасного излучения приписывается Уильяму Гершелю, астроному, в начале 19 века. Гершель опубликовал результаты своих исследований в 1800 году до Лондонского королевского общества. Гершель использовал призму, чтобы преломить свет от солнца и обнаружить инфракрасное излучение, вне красной части спектра, через увеличение температуры, зарегистрированной на термометре. Он был удивлён результатом и назвал их «тепловыми лучами». Термин «инфракрасное излучение» появились только в конце 19 века.

Другие важные даты включают:

  • 1737: Эмили дю Шатле предсказал, то, что сегодня известно как инфракрасное излучение в своей диссертации.
  • 1835: Маседонио Мельони делает первые термобатареи с инфракрасным детектором.
  • 1860: Густав Кирхгоф формулирует теорему абсолютно чёрного тела.
  • 1873: Уиллоуби Смит обнаружил фотопроводимость селена.
  • 1879: Опытным путем сформулирован закон Стефана-Больцмана, согласно которому энергия , излученная абсолютно чёрным телом пропорциональна.
  • 1880-е и 1890-е года: Лорд Рэлей и Вильгельм Вин оба решают часть уравнения абсолютно чёрного тела, но оба решения - приблизительные. Эту проблему называли «ультрафиолетовой катастрофой и инфракрасной катастрофой».
  • 1901: Макс Планк Макс Планк издал уравнение абсолютно чёрного тела и теорему. Он решил проблему квантования допустимых энергетических переходов.
  • 1905: Альберт Эйнштейн разрабатывает теорию фотоэлектрического эффекта, которая определяет фотоны. Также Уильям Коблентз в спектроскопии и радиометрии.
  • 1917: Теодор Кейз разрабатывает датчик таллия-сульфида; британцы разрабатывают первый прибор инфракрасного поиска и слежения в Первой мировой войне и обнаруживают самолеты в диапазоне 1,6 км.
  • 1935: Свинцовые соли - раннее ракетное руководство во Второй мировой войне.
  • 1938: Тью Та предсказал, что пироэлектрический эффект может использоваться, чтобы обнаружить инфракрасную радиацию.
  • 1952: Н. Уилкер обнаруживает антимониды, соединения сурьмы с металлами.
  • 1950: Поль Круз и техасские инструменты образуют инфракрасные изображения до 1955 года.
  • 1950-е и 1960-е годы: Спецификация и радиометрические подразделения, определенные Фредом Никодеменасом, Робертом Кларком Джоунсом.
  • 1958: У. Д. Лоусон (Королевское Радарное Учреждение в Мальверне) обнаруживает свойства обнаружения ИК-фотодиодом.
  • 1958: Фэлкон разработал ракеты с использованием инфракрасного излучения и появляется первый учебник по инфракрасным датчикам Поля Круза, и др.
  • 1961: Джей Купер изобрёл пироэлектрическое обнаружение.
  • 1962: Kruse и Родат продвигают фотодиоды; элементы сигналов и линейных массивов доступны.
  • 1964: У. Г. Эванс обнаруживает инфракрасные терморецепторы у жука.
  • 1965: Первый инфракрасный справочник, первые коммерческие тепловизоры; сформирована лаборатория ночного видения в армии Соединённых Штатов Америки (в настоящее время лаборатория управления ночного видения и электронными датчиками.
  • 1970: Уиллард Бойл и Джордж Э.Смит предлагают прибор с зарядовой связью для телефона с изображениями.
  • 1972: Создан общий программный модуль.
  • 1978: Инфракрасная астрономия изображений достигает совершеннолетия, запланировано создание обсерватории, массовое производство антимонидов и фотодиодов и других материалов.