Перевести гигакалории в килокалории. Единицы измерения энергии, мощности и их правильное использование

В квитанциях за отопление может быть использовано измерение:

  • Гкал;
  • Гкал/час.

В первом случае, имеется в виду поставленное тепло за какой-то период (это может быть месяц, год или же сутки). Гкал/час – это характеристика мощности прибора или процесса (такая единица измерения может сообщать о производительности отопительного прибора или о скорости теплопотерь здания зимой). В квитанциях подразумевается тепло, которое отпустили за 1 час. Тогда для пересчёта на сутки нужно умножить число на 24, а на месяц ещё на 30 / 31.

1 Гкал/час = 40 м 3 воды, которые нагрели до 25 °С за 1 час.

Также гигакалория может быть привязана к объёмам топлива (твёрдого или жидкого) Гкал/м3. И показывает, сколько тепла можно получить с кубометра этого топлива.

Как перевести энергетические единицы?

В интернете реально найти огромное число онлайн-калькуляторов, которые конвертируют нужные величины автоматически.

Когда же дело касается того, чтобы во всём разобраться, зачастую предлагаются длинные формулы и пропорции, которые могут отталкивать простого потребителя, закончившего школу много лет назад.

Но разобраться во всём возможно! Понадобится запомнить 1 или 2 числа, действие и вы легко сможете делать перевод в офлайне, самостоятельно.

Как перевести кВт в Гкал/ч

Ключевой показатель для перевода данных из киловаттов в калории:

1 кВт = 0,00086 Гкал/час

Чтобы узнать, сколько Гкал получается, нужно имеющееся число кВт умножить на постоянную величину, 0,00086.

Рассмотрим пример. Предположим, в калории нужно перевести 250 кВт.

250 кВт х 0,00086 = 0,215 Гкал/час.

(Более точные онлайн-калькуляторы покажут 0,214961).

Например: 70 градусов пришло, 50 градусов мы вернули, у нас осталось 20 градусов.
И еще нам обязательно знать расход воды в системе отопления.
Если у вас есть теплосчетчик, прекрасно ищем на экране величину в т/час . Кстати, по хорошему теплосчетчику, можете сразу же найти Гкал/час – или как иногда говорят мгновенный расход, тогда и считать не надо, просто умножите его на часы и дни и получите тепло в Гкал за необходимый вам диапазон.

Правда это будет тоже приблизительно, точно теплосчетчик считает за каждый час сам и слаживает в свой архив, где вы всегда можете их посмотреть. В среднем хранят часовые архивы 45 суток , а месячные до трех лет. Показания в Гкал всегда можно найти и проверить по ним управляющую компанию или.

Ну а как быть, если теплосчетчика нет. У вас есть договор, там всегда есть эти злополучные Гкал. По ним посчитаем расход в т/час.
Например, в договоре написано – разрешенный максимум теплопотребления – 0,15 Гкал/час. Может быть написано и по другому, но Гкал /час будут всегда.
0,15 умножаем на 1000 и делим на разницу температур из того же договора. У вас будет указан температурный график – например 95/70 или 115/70 или 130/70 со срезом на 115 и т.д.

0,15 х 1000/(95-70) = 6 т/час, вот эти 6 тон в час нам и нужны, это наша плановая прокачка (расход теплоносителя) к которому необходимо стремится, что бы не иметь перетопа и недотопа (если конечно в договоре вам правильно указали величину Гкал/час)

И, наконец считаем тепло, полученные ранее - 20 градусов (разница температур между тем, что к нам в дом пришло и тем, что от нас вернулось в тепловую сеть) умножаем на плановую прокачку (6 т/час) получаем 20 х 6/1000 = 0,12 Гкал/час.

Эта величина тепло в Гкал отпущенное всему дому, лично Вам его посчитает управляющая компания , обычно это делается по соотношению общей площади квартиры к отапливаемой площади всего дома, подробнее об этом напишу в другой статье.

Описанный нами способ конечно грубый, но за каждый час эти способом можно, только учтите, что некоторые теплосчетчики усредняют значения по расходу за разные промежутки времени от нескольких секунд до 10 минут. Если расход воды меняется, например кто разбирает воду, или у вас стоит погодозависимая автоматика, показания в Гкал могут немного отличаться от полученных вами. Но это уж на совести разработчиков теплосчетчиков.

И еще одно небольшое замечание, значение потребленной тепловой энергии (количества теплоты) на вашем счетчике тепла (теплосчетчике, вычислителе количества тепла) может выводиться в различных единицах измерения – Гкал, ГДж, МВтч, кВтч. Соотношение единиц Гкал, Дж и кВт я привожу для Вас в таблице:

А еще лучше, точнее и проще, если вы, и будете пользоваться калькулятором, для перевода единиц измерения энергии из Гкал в Дж или кВт.

Инструкция

Для перевода электрической мощности (изредка говорят тепловая мощность) в какую-либо другую единицу измерения воспользуйтесь данными о соотношении различных единиц. Для этого просто помножьте заданное число мощности на коэффициент, соответствующий той единице измерения, в которую переводите.
1 Ватт-час соответствует 3,57 кДж;
1 Ватт соответствует: 107 эрг/с; 1 Дж/с; 859,85 кал/ч; 0,00134 л.с.
Например, организация указала число 244,23 кВт, которое надо перевести в калории.
244,23 кВт => 244,23* 1000 Вт = 244,23* 1000* 859,85 => = 210 000 000 кал/ч или 0,21 Г кал/ч.

В расчетах, связанных с мощностью, обычно используют стандартные приставки, особенно, когда измеряемые величины слишком маленькие или, наоборот, большие. Это упрощает вычисления, связанные с порядком значения. Ватт сам по себе практически никогда не используется. Переведите кратное число в число целой формы по схеме, приведенной ниже.

1 микро (мк) => 1*0,000001
1 мили (m) = > 1*0,001
1 санти (с) => 1*0,01
1 деци (д) => 1*0,1
1 дека (da) => 1*10
1гекто (г) => 1*100
1 кило (к) => 1*1 000
1 Мега (M)=> 1*1 000 000
1 Гига (Г) => 1* 1 000 000 000

Узнайте, в какую именно единицу измерения тепловой энергии необходимо перевести мощность. Возможные варианты : Дж или Джоуль – единица работы и энергии; Кал (Калории) – единица теплоэнергии, может быть записана как просто кКал, а может выглядеть так – кКал/час.

Под калорией понимается одна из единиц, с помощью которой измеряется энергия или работа. Иначе говоря, для того, чтобы нагреть воду массой 1 грамм на температуру в 1 Кельвин, потребуется 1 Калория(1 Кал.). Перевести калории достаточно просто.

Инструкция

Для начала стоить понять, к какой области современной науки относится та или иная "калория". Не смотря на то, что сейчас в них в основном измеряют энергетическую ценность продуктов, некоторую распространенность имеют следующие "виды" "калорий": Международная калория, термохимическая калория, а так же калория, измеряемая при 15 градусах Цельсия.

Конвертер длины и расстояния Конвертер массы Конвертер мер объема сыпучих продуктов и продуктов питания Конвертер площади Конвертер объема и единиц измерения в кулинарных рецептах Конвертер температуры Конвертер давления, механического напряжения, модуля Юнга Конвертер энергии и работы Конвертер мощности Конвертер силы Конвертер времени Конвертер линейной скорости Плоский угол Конвертер тепловой эффективности и топливной экономичности Конвертер чисел в различных системах счисления Конвертер единиц измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Конвертер угловой скорости и частоты вращения Конвертер ускорения Конвертер углового ускорения Конвертер плотности Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер вращающего момента Конвертер удельной теплоты сгорания (по массе) Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему) Конвертер разности температур Конвертер коэффициента теплового расширения Конвертер термического сопротивления Конвертер удельной теплопроводности Конвертер удельной теплоёмкости Конвертер энергетической экспозиции и мощности теплового излучения Конвертер плотности теплового потока Конвертер коэффициента теплоотдачи Конвертер объёмного расхода Конвертер массового расхода Конвертер молярного расхода Конвертер плотности потока массы Конвертер молярной концентрации Конвертер массовой концентрации в растворе Конвертер динамической (абсолютной) вязкости Конвертер кинематической вязкости Конвертер поверхностного натяжения Конвертер паропроницаемости Конвертер паропроницаемости и скорости переноса пара Конвертер уровня звука Конвертер чувствительности микрофонов Конвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с возможностью выбора опорного давления Конвертер яркости Конвертер силы света Конвертер освещённости Конвертер разрешения в компьютерной графике Конвертер частоты и длины волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Конвертер электрического заряда Конвертер линейной плотности заряда Конвертер поверхностной плотности заряда Конвертер объемной плотности заряда Конвертер электрического тока Конвертер линейной плотности тока Конвертер поверхностной плотности тока Конвертер напряжённости электрического поля Конвертер электростатического потенциала и напряжения Конвертер электрического сопротивления Конвертер удельного электрического сопротивления Конвертер электрической проводимости Конвертер удельной электрической проводимости Электрическая емкость Конвертер индуктивности Конвертер Американского калибра проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Конвертер магнитодвижущей силы Конвертер напряженности магнитного поля Конвертер магнитного потока Конвертер магнитной индукции Радиация. Конвертер мощности поглощенной дозы ионизирующего излучения Радиоактивность. Конвертер радиоактивного распада Радиация. Конвертер экспозиционной дозы Радиация. Конвертер поглощённой дозы Конвертер десятичных приставок Передача данных Конвертер единиц типографики и обработки изображений Конвертер единиц измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

1 килокалория (межд.) в час [ккал/ч] = 0,001163 киловатт [кВт]

Исходная величина

Преобразованная величина

ватт эксаватт петаватт тераватт гигаватт мегаватт киловатт гектоватт декаватт дециватт сантиватт милливатт микроватт нановатт пиковатт фемтоватт аттоватт лошадиная сила лошадиная сила метрическая лошадиная сила котловая лошадиная сила электрическая лошадиная сила насосная лошадиная сила лошадиная сила (немецкая) брит. термическая единица (межд.) в час брит. термическая единица (межд.) в минуту брит. термическая единица (межд.) в секунду брит. термическая единица (термохим.) в час брит. термическая единица (термохим.) в минуту брит. термическая единица (термохим.) в секунду МBTU (международная) в час Тысяча BTU в час МMBTU (международная) в час Миллион BTU в час тонна охлаждения килокалория (межд.) в час килокалория (межд.) в минуту килокалория (межд.) в секунду килокалория (терм.) в час килокалория (терм.) в минуту килокалория (терм.) в секунду калория (межд.) в час калория (межд.) в минуту калория (межд.) в секунду калория (терм.) в час калория (терм.) в минуту калория (терм.) в секунду фут фунт-сила в час фут·фунт-сила/минуту фут·фунт-сила/секунду фунт-фут в час фунт-фут в минуту фунт-фут в секунду эрг в секунду киловольт-ампер вольт-ампер ньютон-метр в секунду джоуль в секунду эксаджоуль в секунду петаджоуль в секунду тераджоуль в секунду гигаджоуль в секунду мегаджоуль в секунду килоджоуль в секунду гектоджоуль в секунду декаджоуль в секунду дециджоуль в секунду сантиджоуль в секунду миллиджоуль в секунду микроджоуль в секунду наноджоуль в секунду пикоджоуль в секунду фемтоджоуль в секунду аттоджоуль в секунду джоуль в час джоуль в минуту килоджоуль в час килоджоуль в минуту планковская мощность

Тепловая эффективность и топливная экономичность

Подробнее о мощности

Общие сведения

В физике мощность - это отношение работы ко времени, в течении которого она выполняется. Механическая работа - это количественная характеристика действия силы F на тело, в результате которого оно перемещается на расстояние s . Мощность можно также определить как скорость передачи энергии. Другими словами, мощность - показатель работоспособности машины. Измерив мощность, можно понять в каком количестве и с какой скоростью выполняется работа.

Единицы мощности

Мощность измеряют в джоулях в секунду, или ваттах. Наряду с ваттами используются также лошадиные силы. До изобретения паровой машины мощность двигателей не измеряли, и, соответственно, не было общепринятых единиц мощности. Когда паровую машину начали использовать в шахтах, инженер и изобретатель Джеймс Уатт занялся ее усовершенствованием. Для того чтобы доказать, что его усовершенствования сделали паровую машину более производительной, он сравнил ее мощность с работоспособностью лошадей, так как лошади использовались людьми на протяжении долгих лет, и многие легко могли представить, сколько работы может выполнить лошадь за определенное количество времени. К тому же, не во всех шахтах применялись паровые машины. На тех, где их использовали, Уатт сравнивал мощность старой и новой моделей паровой машины с мощностью одной лошади, то есть, с одной лошадиной силой. Уатт определил эту величину экспериментально, наблюдая за работой тягловых лошадей на мельнице. Согласно его измерениям одна лошадиная сила - 746 ватт. Сейчас считается, что эта цифра преувеличена, и лошадь не может долго работать в таком режиме, но единицу изменять не стали. Мощность можно использовать как показатель производительности, так как при увеличении мощности увеличивается количество выполненной работы за единицу времени. Многие поняли, что удобно иметь стандартизированную единицу мощности, поэтому лошадиная сила стала очень популярна. Ее начали использовать и при измерении мощности других устройств, особенно транспорта. Несмотря на то, что ватты используются почти также долго, как лошадиные силы, в автомобильной промышленности чаще применяются лошадиные силы, и многим покупателям понятнее, когда именно в этих единицах указана мощность автомобильного двигателя.

Мощность бытовых электроприборов

На бытовых электроприборах обычно указана мощность. Некоторые светильники ограничивают мощность лампочек, которые в них можно использовать, например не более 60 ватт. Это сделано потому, что лампы более высокой мощности выделяют много тепла и светильник с патроном могут быть повреждены. Да и сама лампа при высокой температуре в светильнике прослужит недолго. В основном это проблема с лампами накаливания. Светодиодные, люминесцентные и другие лампы обычно работают с меньшей мощностью при одинаковой яркости и, если они используются в светильниках, предназначенных для ламп накаливания, проблем с мощностью не возникает.

Чем больше мощность электроприбора, тем выше потребление энергии, и стоимости использования прибора. Поэтому производители постоянно улучшают электроприборы и лампы. Световой поток ламп, измеряемый в люменах, зависит от мощности, но также и от вида ламп. Чем больше световой поток лампы, тем ярче выглядит ее свет. Для людей важна именно высокая яркость, а не потребляемая ламой мощность, поэтому в последнее время альтернативы лампам накаливания пользуются все большей популярностью. Ниже приведены примеры видов ламп, их мощности и создаваемый ими световой поток.

  • 450 люменов:
    • Лампа накаливания: 40 ватт
    • Компактная люминесцентная лампа: 9–13 ватт
    • Светодиодная лампа: 4–9 ватт
  • 800 люменов:
    • Лампа накаливания: 60 ватт
    • Компактная люминесцентная лампа: 13–15 ватт
    • Светодиодная лампа: 10–15 ватт
  • 1600 люменов:
    • Лампа накаливания: 100 ватт
    • Компактная люминесцентная лампа: 23–30 ватт
    • Светодиодная лампа: 16–20 ватт

    Из этих примеров очевидно, что при одном и том же создаваемом световом потоке светодиодные лампы потребляют меньше всего электроэнергии и более экономны, по сравнению с лампами накаливания. На момент написания этой статьи (2013 год) цена светодиодных ламп во много раз превышает цену ламп накаливания. Несмотря на это, в некоторых странах запретили или собираются запретить продажу ламп накаливания из-за их высокой мощности.

    Мощность бытовых электроприборов может отличаться в зависимости от производителя, и не всегда одинакова во время работы прибора. Внизу приведены примерные мощности некоторых бытовых приборов.

    • Бытовые кондиционеры для охлаждения жилого дома, сплит-система: 20–40 киловатт
    • Моноблочные оконные кондиционеры: 1–2 киловатта
    • Духовые шкафы: 2.1–3.6 киловатта
    • Стиральные машины и сушки: 2–3.5 киловатта
    • Посудомоечные машины:1.8–2.3 киловатта
    • Электрические чайники: 1–2 киловатта
    • Микроволновые печи:0.65–1.2 киловатта
    • Холодильники: 0.25–1 киловатт
    • Тостеры: 0.7–0.9 киловатта

    Мощность в спорте

    Оценивать работу с помощью мощности можно не только для машин, но и для людей и животных. Например, мощность, с которой баскетболистка бросает мяч, вычисляется с помощью измерения силы, которую она прикладывает к мячу, расстояния которое пролетел мяч, и времени, в течение которого эта сила была применена. Существуют сайты, позволяющие вычислить работу и мощность во время физических упражнений. Пользователь выбирает вид упражнений, вводит рост, вес, длительность упражнений, после чего программа рассчитывает мощность. Например, согласно одному из таких калькуляторов, мощность человека ростом 170 сантиметров и весом в 70 килограмм, который сделал 50 отжиманий за 10 минут, равна 39.5 ватта. Спортсмены иногда используют устройства для определения мощности, с которой работают мышцы во время физической нагрузки. Такая информация помогает определить, насколько эффективна выбранная ими программа упражнений.

    Динамометры

    Для измерения мощности используют специальные устройства - динамометры. Ими также можно измерять вращающий момент и силу. Динамометры используют в разных отраслях промышленности, от техники до медицины. К примеру, с их помощью можно определить мощность автомобильного двигателя. Для измерения мощности автомобилей используется несколько основных видов динамометров. Для того, чтобы определить мощность двигателя с помощью одних динамометров, необходимо извлечь двигатель из машины и присоединить его к динамометру. В других динамометрах усилие для измерения передается непосредственно с колеса автомобиля. В этом случае двигатель автомобиля через трансмиссию приводит в движение колеса, которые, в свою очередь, вращают валики динамометра, измеряющего мощность двигателя при различных дорожных условиях.

    Динамометры также используют в спорте и в медицине. Самый распространенный вид динамометров для этих целей - изокинетический. Обычно это спортивный тренажер с датчиками, подключенный к компьютеру. Эти датчики измеряют силу и мощность всего тела или отдельных групп мышц. Динамометр можно запрограммировать выдавать сигналы и предупреждения если мощность превысила определенное значение. Это особенно важно людям с травмами во время реабилитационного периода, когда необходимо не перегружать организм.

    Согласно некоторым положениям теории спорта, наибольшее спортивное развитие происходит при определенной нагрузке, индивидуальной для каждого спортсмена. Если нагрузка недостаточно тяжелая, спортсмен привыкает к ней и не развивает свои способности. Если, наоборот, она слишком тяжелая, то результаты ухудшаются из-за перегрузки организма. Физическая нагрузка во время некоторых упражнений, таких как велосипедный спорт или плавание, зависит от многих факторов окружающей среды, таких как состояние дороги или ветер. Такую нагрузку трудно измерить, однако можно выяснить с какой мощностью организм противодействует этой нагрузке, после чего изменять схему упражнений, в зависимости от желаемой нагрузки.

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

Конвертер длины и расстояния Конвертер массы Конвертер мер объема сыпучих продуктов и продуктов питания Конвертер площади Конвертер объема и единиц измерения в кулинарных рецептах Конвертер температуры Конвертер давления, механического напряжения, модуля Юнга Конвертер энергии и работы Конвертер мощности Конвертер силы Конвертер времени Конвертер линейной скорости Плоский угол Конвертер тепловой эффективности и топливной экономичности Конвертер чисел в различных системах счисления Конвертер единиц измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Конвертер угловой скорости и частоты вращения Конвертер ускорения Конвертер углового ускорения Конвертер плотности Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер вращающего момента Конвертер удельной теплоты сгорания (по массе) Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему) Конвертер разности температур Конвертер коэффициента теплового расширения Конвертер термического сопротивления Конвертер удельной теплопроводности Конвертер удельной теплоёмкости Конвертер энергетической экспозиции и мощности теплового излучения Конвертер плотности теплового потока Конвертер коэффициента теплоотдачи Конвертер объёмного расхода Конвертер массового расхода Конвертер молярного расхода Конвертер плотности потока массы Конвертер молярной концентрации Конвертер массовой концентрации в растворе Конвертер динамической (абсолютной) вязкости Конвертер кинематической вязкости Конвертер поверхностного натяжения Конвертер паропроницаемости Конвертер паропроницаемости и скорости переноса пара Конвертер уровня звука Конвертер чувствительности микрофонов Конвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с возможностью выбора опорного давления Конвертер яркости Конвертер силы света Конвертер освещённости Конвертер разрешения в компьютерной графике Конвертер частоты и длины волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Конвертер электрического заряда Конвертер линейной плотности заряда Конвертер поверхностной плотности заряда Конвертер объемной плотности заряда Конвертер электрического тока Конвертер линейной плотности тока Конвертер поверхностной плотности тока Конвертер напряжённости электрического поля Конвертер электростатического потенциала и напряжения Конвертер электрического сопротивления Конвертер удельного электрического сопротивления Конвертер электрической проводимости Конвертер удельной электрической проводимости Электрическая емкость Конвертер индуктивности Конвертер Американского калибра проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Конвертер магнитодвижущей силы Конвертер напряженности магнитного поля Конвертер магнитного потока Конвертер магнитной индукции Радиация. Конвертер мощности поглощенной дозы ионизирующего излучения Радиоактивность. Конвертер радиоактивного распада Радиация. Конвертер экспозиционной дозы Радиация. Конвертер поглощённой дозы Конвертер десятичных приставок Передача данных Конвертер единиц типографики и обработки изображений Конвертер единиц измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

1 киловатт [кВт] = 0,239005736137667 килокалория (терм.) в секунду [ккал(Т)/с]

Исходная величина

Преобразованная величина

ватт эксаватт петаватт тераватт гигаватт мегаватт киловатт гектоватт декаватт дециватт сантиватт милливатт микроватт нановатт пиковатт фемтоватт аттоватт лошадиная сила лошадиная сила метрическая лошадиная сила котловая лошадиная сила электрическая лошадиная сила насосная лошадиная сила лошадиная сила (немецкая) брит. термическая единица (межд.) в час брит. термическая единица (межд.) в минуту брит. термическая единица (межд.) в секунду брит. термическая единица (термохим.) в час брит. термическая единица (термохим.) в минуту брит. термическая единица (термохим.) в секунду МBTU (международная) в час Тысяча BTU в час МMBTU (международная) в час Миллион BTU в час тонна охлаждения килокалория (межд.) в час килокалория (межд.) в минуту килокалория (межд.) в секунду килокалория (терм.) в час килокалория (терм.) в минуту килокалория (терм.) в секунду калория (межд.) в час калория (межд.) в минуту калория (межд.) в секунду калория (терм.) в час калория (терм.) в минуту калория (терм.) в секунду фут фунт-сила в час фут·фунт-сила/минуту фут·фунт-сила/секунду фунт-фут в час фунт-фут в минуту фунт-фут в секунду эрг в секунду киловольт-ампер вольт-ампер ньютон-метр в секунду джоуль в секунду эксаджоуль в секунду петаджоуль в секунду тераджоуль в секунду гигаджоуль в секунду мегаджоуль в секунду килоджоуль в секунду гектоджоуль в секунду декаджоуль в секунду дециджоуль в секунду сантиджоуль в секунду миллиджоуль в секунду микроджоуль в секунду наноджоуль в секунду пикоджоуль в секунду фемтоджоуль в секунду аттоджоуль в секунду джоуль в час джоуль в минуту килоджоуль в час килоджоуль в минуту планковская мощность

Подробнее о мощности

Общие сведения

В физике мощность - это отношение работы ко времени, в течении которого она выполняется. Механическая работа - это количественная характеристика действия силы F на тело, в результате которого оно перемещается на расстояние s . Мощность можно также определить как скорость передачи энергии. Другими словами, мощность - показатель работоспособности машины. Измерив мощность, можно понять в каком количестве и с какой скоростью выполняется работа.

Единицы мощности

Мощность измеряют в джоулях в секунду, или ваттах. Наряду с ваттами используются также лошадиные силы. До изобретения паровой машины мощность двигателей не измеряли, и, соответственно, не было общепринятых единиц мощности. Когда паровую машину начали использовать в шахтах, инженер и изобретатель Джеймс Уатт занялся ее усовершенствованием. Для того чтобы доказать, что его усовершенствования сделали паровую машину более производительной, он сравнил ее мощность с работоспособностью лошадей, так как лошади использовались людьми на протяжении долгих лет, и многие легко могли представить, сколько работы может выполнить лошадь за определенное количество времени. К тому же, не во всех шахтах применялись паровые машины. На тех, где их использовали, Уатт сравнивал мощность старой и новой моделей паровой машины с мощностью одной лошади, то есть, с одной лошадиной силой. Уатт определил эту величину экспериментально, наблюдая за работой тягловых лошадей на мельнице. Согласно его измерениям одна лошадиная сила - 746 ватт. Сейчас считается, что эта цифра преувеличена, и лошадь не может долго работать в таком режиме, но единицу изменять не стали. Мощность можно использовать как показатель производительности, так как при увеличении мощности увеличивается количество выполненной работы за единицу времени. Многие поняли, что удобно иметь стандартизированную единицу мощности, поэтому лошадиная сила стала очень популярна. Ее начали использовать и при измерении мощности других устройств, особенно транспорта. Несмотря на то, что ватты используются почти также долго, как лошадиные силы, в автомобильной промышленности чаще применяются лошадиные силы, и многим покупателям понятнее, когда именно в этих единицах указана мощность автомобильного двигателя.

Мощность бытовых электроприборов

На бытовых электроприборах обычно указана мощность. Некоторые светильники ограничивают мощность лампочек, которые в них можно использовать, например не более 60 ватт. Это сделано потому, что лампы более высокой мощности выделяют много тепла и светильник с патроном могут быть повреждены. Да и сама лампа при высокой температуре в светильнике прослужит недолго. В основном это проблема с лампами накаливания. Светодиодные, люминесцентные и другие лампы обычно работают с меньшей мощностью при одинаковой яркости и, если они используются в светильниках, предназначенных для ламп накаливания, проблем с мощностью не возникает.

Чем больше мощность электроприбора, тем выше потребление энергии, и стоимости использования прибора. Поэтому производители постоянно улучшают электроприборы и лампы. Световой поток ламп, измеряемый в люменах, зависит от мощности, но также и от вида ламп. Чем больше световой поток лампы, тем ярче выглядит ее свет. Для людей важна именно высокая яркость, а не потребляемая ламой мощность, поэтому в последнее время альтернативы лампам накаливания пользуются все большей популярностью. Ниже приведены примеры видов ламп, их мощности и создаваемый ими световой поток.

  • 450 люменов:
    • Лампа накаливания: 40 ватт
    • Компактная люминесцентная лампа: 9–13 ватт
    • Светодиодная лампа: 4–9 ватт
  • 800 люменов:
    • Лампа накаливания: 60 ватт
    • Компактная люминесцентная лампа: 13–15 ватт
    • Светодиодная лампа: 10–15 ватт
  • 1600 люменов:
    • Лампа накаливания: 100 ватт
    • Компактная люминесцентная лампа: 23–30 ватт
    • Светодиодная лампа: 16–20 ватт

    Из этих примеров очевидно, что при одном и том же создаваемом световом потоке светодиодные лампы потребляют меньше всего электроэнергии и более экономны, по сравнению с лампами накаливания. На момент написания этой статьи (2013 год) цена светодиодных ламп во много раз превышает цену ламп накаливания. Несмотря на это, в некоторых странах запретили или собираются запретить продажу ламп накаливания из-за их высокой мощности.

    Мощность бытовых электроприборов может отличаться в зависимости от производителя, и не всегда одинакова во время работы прибора. Внизу приведены примерные мощности некоторых бытовых приборов.

    • Бытовые кондиционеры для охлаждения жилого дома, сплит-система: 20–40 киловатт
    • Моноблочные оконные кондиционеры: 1–2 киловатта
    • Духовые шкафы: 2.1–3.6 киловатта
    • Стиральные машины и сушки: 2–3.5 киловатта
    • Посудомоечные машины:1.8–2.3 киловатта
    • Электрические чайники: 1–2 киловатта
    • Микроволновые печи:0.65–1.2 киловатта
    • Холодильники: 0.25–1 киловатт
    • Тостеры: 0.7–0.9 киловатта

    Мощность в спорте

    Оценивать работу с помощью мощности можно не только для машин, но и для людей и животных. Например, мощность, с которой баскетболистка бросает мяч, вычисляется с помощью измерения силы, которую она прикладывает к мячу, расстояния которое пролетел мяч, и времени, в течение которого эта сила была применена. Существуют сайты, позволяющие вычислить работу и мощность во время физических упражнений. Пользователь выбирает вид упражнений, вводит рост, вес, длительность упражнений, после чего программа рассчитывает мощность. Например, согласно одному из таких калькуляторов, мощность человека ростом 170 сантиметров и весом в 70 килограмм, который сделал 50 отжиманий за 10 минут, равна 39.5 ватта. Спортсмены иногда используют устройства для определения мощности, с которой работают мышцы во время физической нагрузки. Такая информация помогает определить, насколько эффективна выбранная ими программа упражнений.

    Динамометры

    Для измерения мощности используют специальные устройства - динамометры. Ими также можно измерять вращающий момент и силу. Динамометры используют в разных отраслях промышленности, от техники до медицины. К примеру, с их помощью можно определить мощность автомобильного двигателя. Для измерения мощности автомобилей используется несколько основных видов динамометров. Для того, чтобы определить мощность двигателя с помощью одних динамометров, необходимо извлечь двигатель из машины и присоединить его к динамометру. В других динамометрах усилие для измерения передается непосредственно с колеса автомобиля. В этом случае двигатель автомобиля через трансмиссию приводит в движение колеса, которые, в свою очередь, вращают валики динамометра, измеряющего мощность двигателя при различных дорожных условиях.

    Динамометры также используют в спорте и в медицине. Самый распространенный вид динамометров для этих целей - изокинетический. Обычно это спортивный тренажер с датчиками, подключенный к компьютеру. Эти датчики измеряют силу и мощность всего тела или отдельных групп мышц. Динамометр можно запрограммировать выдавать сигналы и предупреждения если мощность превысила определенное значение. Это особенно важно людям с травмами во время реабилитационного периода, когда необходимо не перегружать организм.

    Согласно некоторым положениям теории спорта, наибольшее спортивное развитие происходит при определенной нагрузке, индивидуальной для каждого спортсмена. Если нагрузка недостаточно тяжелая, спортсмен привыкает к ней и не развивает свои способности. Если, наоборот, она слишком тяжелая, то результаты ухудшаются из-за перегрузки организма. Физическая нагрузка во время некоторых упражнений, таких как велосипедный спорт или плавание, зависит от многих факторов окружающей среды, таких как состояние дороги или ветер. Такую нагрузку трудно измерить, однако можно выяснить с какой мощностью организм противодействует этой нагрузке, после чего изменять схему упражнений, в зависимости от желаемой нагрузки.

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

Что же такое Гкал? Гкал - гигакалория, то есть измерительная единица, в которой исчисляется тепловая энергия. Произвести расчет Гкал можно самостоятельно, но предварительно изучив некоторую информацию о тепловой энергии. Рассмотрим в статье общие сведения о расчетах, а также формулу для расчета Гкал.

Что такое Гкал?

Калория - определенное количество энергии, которое необходимо для нагрева 1 грамма воды до 1 градуса. Данное условие соблюдается в условиях атмосферного давления. Для расчетов тепловой энергии применяется большая величина - Гкал. Гигакалория соответствует 1 миллиарду калорий. Данная величина начала использоваться с 1995 года в соответствии с документом Министерства топлива и энергетики.

В России среднее значение потребления на 1 кв.м. составляет 0,9342 Гкал за месяц. В каждом регионе это значение может меняться в большую или меньшую сторону в зависимости от погодных условий.

Что такое гигакалория, если ее перевести в обычные величины?

  1. 1 Гигакалория равняется 1162,2 киловатт-часам.
  2. Для того чтобы нагреть 1 тысячу тонн воды до температуры +1 градус потребуется 1 гигакалория.

Гкал в многоквартирных домах

В многоквартирных домах гигакалории используются в тепловых расчетах. Если знать точное количество теплоэнергии, которое остается в доме, то можно рассчитать счет для оплаты отопления. Например, если в доме не установлен общедомовой или индивидуальный прибор тепла, то за централизованное отопление придется платить исходя из площади обогреваемого помещения. В том случае если тепловой счетчик установлен, то подразумевается разводка горизонтального типа или же последовательная, или коллекторная. В таком варианте в квартире делают два стояка для подающей и обратной трубы, а система внутри квартиры определяется жильцами. Такие схемы используются в новых домах. Именно поэтому жильцы могут самостоятельно регулировать расход тепловой энергии, сделав выбор между комфортом и экономией.

Регулировка производится следующим образом:

  1. За счет дросселирования батарей отопления происходит ограничение проходимости прибора отопления, следовательно, температура в нем снижается, а расход тепловой энергии уменьшается.
  2. Установка общего термостата на обратной трубе. В таком варианте расход рабочей жидкости определяется температурой в квартире и если она увеличивается, то расход снижается, а если уменьшается, то расход увеличивается.

Гкал в частных домах

Если говорить о Гкал в частном доме, то жильцы в первую очередь интересуются затратами теплоэнергии при каждом виде топлива. Поэтому рассмотрим некоторые расценки за 1 Гкал на различные виды топлива:

  • - 3300 рублей;
  • Газ сжиженный - 520 рублей;
  • Уголь - 550 рублей;
  • Пеллеты - 1800 рублей;
  • Дизельное топливо - 3270 рублей;
  • Электроэнергия - 4300 рублей.

Цена может меняться в зависимости от региона, а также стоит учитывать, что стоимость топлива периодически увеличивается.

Общие сведения о расчетах Гкал

Для расчета Гкал необходимо произвести специальные вычисления, порядок которых установлен специальными нормативными актами. Расчет производят коммунальные службы, которые могут вам разъяснить порядок расчета Гкал, а также расшифровать любые непонятные моменты.

Если у вас установлен индивидуальный прибор, то получится избежать любых проблем и переплат. Вам достаточно, ежемесячно снимать показатели со счетчика и умножать полученное число на тариф. Полученную сумму необходимо оплатить за пользование отоплением.

Счетчики тепла

  1. Температура жидкости на входе и выходе определенного участка магистрали.
  2. Расход жидкости, которая движется через отопительные приборы.

Расход можно определить при помощи счетчиков тепла. Приборы учета тепла могут быть двух видов:

  1. Крыльчатые счетчики. Такие приборы используются для учета тепловой энергии, а также расхода горячей воды. Отличие между такими счетчиками и приборами для учета холодной воды - материал, из которого изготавливается крыльчатка. В таких приборах она наиболее устойчива к воздействию высоких температур. Принцип работы схож у двух приборов:
  • Учетному устройству передается вращение крыльчатки;
  • Крыльчатка начинает вращение из-за движения рабочей жидкости;
  • Передача производится без непосредственного взаимодействия, а с помощью перманентного магнита.

Такие приборы имеют простую конструкцию, но порог срабатывания у них невысок. А также они имеют надежную защиту от искажений показаний. При помощи антимагнитного экрана происходит предотвращение торможения крыльчатки наружным магнитным полем.

  1. Устройства с регистратором перепадов. Такие счетчики работают по закону Бернулли, который утверждает, что скорость движения потока жидкости или газа обратно пропорциональна его статическому движению. Если давление регистрируется двумя датчиками, то можно без труда определить расход в реальном времени. Счетчик подразумевает в устройстве конструкции электронику. Практически все модели предоставляют информацию о расходе и температуре рабочей жидкости, а также определяют расход тепловой энергии. Настраивать работу можно вручную при помощи ПК. Подключить прибор можно к ПК через порт.

Многие жильцы задаются вопросом, как рассчитать количество Гкал на отопление в открытой системе отопления, в которой возможен отбор для горячей воды. Датчики напора устанавливаются на обратную трубу и подающую одновременно. Разница, которая будет в расходе рабочей жидкости, будет показывать количество теплой воды, которая была потрачена для бытовых нужд.

Формула расчета Гкал по отоплению

Если у вас отсутствует индивидуальный прибор, то необходимо воспользоваться следующей формулой расчета тепла на отопление: Q = V * (T1 - T2) / 1000, где:

  1. Q - общий объем энергии тепла.
  2. V- объем потребления горячей воды. Измеряется в тоннах или кубических метрах.
  3. T1 - это температура горячей воды, которая измеряется в градусах Цельсия. В таком расчете лучше учитывать такую температуру, которая будет характерна для конкретного рабочего давления. Такой показатель имеет название - энтальпия. Если нет необходимого датчика, то принять ту температуру, которая будет схожа с энтальпией. Обычно средний показатель такой температуры находится в пределах 60-65 градусов Цельсия.
  4. T2 - это температура холодной воды, которая измеряется в градусах Цельсия. Как известно попасть к трубопроводу с холодной водой не просто, поэтому такие значения определяются постоянными значения. Они в свою очередь зависят от климатических условий за пределами дома. Например, в холодное время года такая величина может быть 5 градусов, а в теплое время, когда нет отопления, может достигать 15 градусов.
  5. 1000 представляет собой коэффициент, благодаря которому можно получить ответ в гигакалориях. Такое значение будет более точным, чем в обычных калориях.

В закрытой отопительной системе расчет гигакалорий происходит в другой форме. Для того чтобы рассчитать Гкал в закрытой системе отопления необходимо воспользоваться следующей формулой: Q = ((V1 * (T1 - T)) — (V2 * (T2 - T))) / 1000, где:

  1. Q - прежний объем тепловой энергии;
  2. V1 - это параметр расхода носителя тепла в подающей трубе. В качестве источника тепла может быть водяной пар или обычная вода.
  3. V2 - объем расхода воды в отводящей трубе;
  4. T1 - температура в трубе подачи носителя тепла;
  5. T2 - температура на выходе трубы;
  6. T - температура холодной воды.

Расчет тепловой энергии на отопление по данной формуле зависит от двух параметров: первый показывает тепло, которое поступает в систему, а второй - параметр тепла при отводе носителя тепла по обратной трубе.

Другие способы расчета Гкал по отоплению

  1. Q = ((V1 * (T1 — T2)) + (V1 — V2) * (T2 - T)) / 1000.
  2. Q = ((V2 * (T1 — T2)) + (V1 — V2) * (T1 - T)) / 1000.

Все значения в данных формулах такие же, как и в предыдущей формуле. Исходя из вышеперечисленных расчетов, можно сделать вывод, что рассчитать Гкал за отопление можно самостоятельно. Но следует обратиться за консультацией в специальные компании, которые несут ответственность за подачу теплоэнергии в дом, так как их работа и система расчетов могут отличаться от этих формул и состоять из другого комплекса мероприятий.

Если вы решили в своем частном доме сделать систему «Теплый пол», то принцип расчета отопления будет совершенно другой. Расчет будет намного сложнее, так как следует учитывать не только особенности контура отопления, но и значения электрической сети, от которой происходит нагрев пола. Компании, которые отвечают за контроль над работами по монтажу теплого пола, будут другими.

Многие жильцы испытывают трудности при переводе килокалорий в киловатты. Связано это со многими пособиями измерительных единиц в международной системе, которая называется «Си». При переводе килокалорий в киловатты следует использовать коэффициент 850. То есть 1 кВт равняется 850 ккал. Такой расчет намного проще других, так как узнать необходимый объем гигакалорий не трудно. 1 гигакалория = 1 миллиону калорий.

В ходе расчета следует помнить, что любые современные приборы имеют небольшую погрешность. В основном они являются допустимыми. Но рассчитывать погрешность необходимо самостоятельно. Например, это можно сделать при помощи следующей формулы: R = (V1 — V2) / (V1+V2) * 100, где:

  1. R - погрешность общедомового прибора на отопление.
  2. V1 и V2 - это уже указанные ранее параметры расхода воды в системе.
  3. 100 - это коэффициент, который отвечает за перевод полученного значения в проценты.
    В соответствии с эксплуатационными нормами максимальная погрешность, которая может быть - 2%. В основном такой показатель не превышает 1%.

Итоги расчетов Гкал по отоплению

Если вы правильно выполнили расчет потребления Гкал тепловой энергии, то вы можете не беспокоиться о переплатах за коммунальные услуги. Если воспользоваться вышеперечисленными формулами, то можно сделать вывод, что при отоплении жилого дома площадью до 200 кв.м. потребуется затратить около 3 Гкал за 1 месяц. Если учесть что отопительный сезон во многих регионах страны длится примерно 6 месяцев, то можно посчитать приблизительный расход тепловой энергии. Для этого 3 Гкал умножаем на 6 месяцев и получаем 18 Гкал.

Исходя из информации указанной выше, можно сделать вывод, что все расчеты по расходу тепловой энергии в определенном доме можно сделать самостоятельно без помощи специальных организаций. Но стоит помнить, что все данные должны быть рассчитаны точно по специальным математическим формулам. Кроме этого все процедуры нужно согласовывать со специальными органами, которые контролируют такие действия. Если вы не уверены, что выполните расчет самостоятельно, то можете воспользоваться услугами профессиональных специалистов, которые занимаются такой работой и имеют в наличии материалы, подробно описывающие весь процесс и фото образцов системы отопления, а также их схемы подключения.

Настоящая статья является седьмой публикацией цикла «Мифы ЖКХ», посвященного развенчанию . Мифы и лжетеории, широко распространенные в ЖКХ России, способствуют росту социальной напряженности, развитию « » между потребителями и исполнителями коммунальных услуг, что ведет к крайне негативным последствиям в жилищной отрасли. Статьи цикла рекомендуются, в первую очередь, для потребителей жилищно-коммунальных услуг (ЖКУ), однако, и специалисты по вопросам ЖКХ могут найти в них что-то полезное. Кроме того, распространение публикаций цикла «Мифы ЖКХ» среди потребителей ЖКУ может способствовать более глубокому пониманию сферы ЖКХ жильцами многоквартирных домов, что ведет к развитию конструктивного взаимодействия между потребителями и исполнителями коммунальных услуг. Полный перечень статей цикла «Мифы ЖКХ» доступен

**************************************************

В настоящей статье рассмотрен несколько необычный вопрос, который, тем не менее, как показывает практика, волнует довольно-таки существенную часть потребителей коммунальных услуг, а именно: почему единицей измерения норматива потребления коммунальной услуги по отоплению является «Гкал/кв.метр»? Непонимание данного вопроса привело к выдвижению необоснованной гипотезы о том, что якобы единица измерения норматива потребления теплоэнергии на отопление выбрана неверно. Рассматриваемое предположение приводит к возникновению некоторых мифов и лжетеорий жилищной сферы, которые опровергнуты в данной публикации. Дополнительно в статье даны разъяснения, что же является коммунальной услугой по отоплению и как технически предоставляется эта услуга.

Суть лжетеории

Сразу необходимо отметить, что анализируемые в публикации неверные предположения актуальны для случаев отсутствия приборов учета отопления — то есть, для тех ситуаций, когда в расчетах применяется .

Четко сформулировать лжетеории, следующие из гипотезы о неправильном выборе единицы измерения норматива потребления отопления, затруднительно. Последствиями такой гипотезы являются, например, высказывания:
⁃ «Объем теплоносителя измеряется в кубических метрах, теплоэнергия в гигакалориях, значит и норматив потребления отопления должен быть в Гкал/куб.метр! »;
⁃ «Коммунальная услуга по отоплению потребляется для обогревания пространства квартиры, а это пространство измеряется в кубических метрах, а не в квадратных! Применение в расчетах именно площади незаконно, должен применяться объем! »;
⁃ «Топливо для приготовления горячей воды, используемой для отопления, может измеряться либо в единицах объема (куб.метр), либо в единицах веса (кг), но никак не в единицах площади (кв.метр). Нормативы рассчитываются незаконно, неправильно! »;
⁃ «Абсолютно непонятно, применительно к какой площади рассчитан норматив — к площади батареи, к площади сечения подающего трубопровода, к площади земельного участка, на котором стоит дом, к площади стен этого дома или, может быть, к площади его крыши. Ясно только, что невозможно применять в расчетах площадь помещений, поскольку в многоэтажном доме помещения расположены друг над другом, и фактически их площадь применяется в расчетах многократно — примерно столько раз, сколько в доме этажей ».

Из приведенных высказываний могут следовать различные выводы, часть из которых сводится к фразе «Всё неправильно, платить не буду », а часть помимо этой же фразы содержит ещё и некоторые логические доводы, среди которых можно выделить следующие:
1) поскольку в знаменателе единицы измерения норматива указана более низкая степень величины (квадрат), чем положено (куб), то есть применяемый знаменатель меньше, чем подлежащий применению, то значение норматива по правилам математики является завышенным (чем меньше знаменатель дроби, тем больше значение самой дроби);
2) неверно выбранная единица измерения норматива предполагает проведение дополнительных математических действий перед тем, как подставлять в формулы 2, 2(1), 2(2), 2(3) Приложения 2 Правил предоставления коммунальных услуг собственникам и пользователям помещений в многоквартирных домах и жилых домов, утвержденных ПП РФ от 06.05.2011 N354 (далее — Правила 354) значений NT (норматив потребления коммунальной услуги по отоплению) и TT (тариф на тепловую энергию).

В качестве таких предварительных преобразований предлагаются не выдерживающие никакой критики действия, например* :
⁃ Значение NT равно квадрату утвержденного субъектом РФ норматива, поскольку в знаменателе единицы измерения указано «квадратный метр»;
⁃ Значение TT равно произведению тарифа на норматив, то есть TT является не тарифом на теплоэнергию, а некой удельной стоимостью теплоэнергии, расходуемой на обогрев одного квадратного метра;
⁃ Другие преобразования, логику которых вообще не удалось постичь, даже при попытках применения самых невероятных и фантастических схем, расчетов, теорий.

Поскольку многоквартирный дом состоит из совокупности жилых и нежилых помещений и мест общего пользования (общего имущества), при этом общее имущество на праве общедолевой собственности принадлежит собственникам отдельных помещений дома, весь объем тепловой энергии, поступающей в дом, потребляется именно собственниками помещений такого дома. Следовательно, и оплата теплоэнергии, потребленной на отопление, должна производиться собственниками помещений МКД. И тут возникает вопрос — каким образом распределить стоимость всего объема теплоэнергии, потребленной многоквартирным домом, между собственниками помещений этого МКД?

Руководствуясь вполне логичными выводами о том, что потребление теплоэнергии в каждом конкретном помещении зависит от размера такого помещения, Правительство РФ установило порядок распределения объема теплоэнергии, потребляемой всем домом, среди помещений такого дома пропорционально площади этих помещений. Такой предусматривают как Правила 354 (распределение показаний общедомового прибора учета отопления пропорционально долям площадей помещений конкретных собственников в общей площади всех помещений дома в собственности), так и Правила 306 при установлении норматива потребления отопления.

Пункт 18 Приложения 1 к Правилам 306 устанавливает:
«18. Норматив потребления коммунальной услуги по отоплению в жилых и нежилых помещениях (Гкал на 1 кв.м общей площади всех жилых и нежилых помещений в многоквартирном доме или жилого дома в месяц) определяется по следующей формуле (формула 18):

где:
— количество тепловой энергии, потребляемой за один отопительный период многоквартирными домами, не оборудованными коллективными (общедомовыми) приборами учета тепловой энергии, или жилыми домами, не оборудованными индивидуальными приборами учета тепловой энергии (Гкал), определяемое по формуле 19;
общая площадь всех жилых и нежилых помещений в многоквартирных домах или общая площадь жилых домов (кв.м);
— период, равный продолжительности отопительного периода (количество календарных месяцев, в том числе неполных, в отопительном периоде)
».

Таким образом, именно приведенной формулой обусловлено, что норматив потребления коммунальной услуги по отоплению измеряется именно в Гкал/кв.метр, что, кроме всего прочего, прямо установлено подпунктом «е» пункта 7 Правил 306:
«7. При выборе единицы измерения нормативов потребления коммунальных услуг используются следующие показатели:
е) в отношении отопления:
в жилых помещениях — Гкал на 1 кв. метр общей площади всех помещений в многоквартирном доме или жилого дома
».

Исходя из сказанного, норматив потребления коммунальной услуги по отоплению равен количеству теплоэнергии, потребляемой в многоквартирном доме на 1 квадратный метр площади помещений в собственности в месяц отопительного периода (при выборе способа оплаты равномерно в течение года применяется).

Примеры расчетов

Как указывалось , приведем пример расчета по верному методу и по методам, предлагаемым лжетеоретиками. Для расчета стоимости отопления примем следующие условия:

Пусть норматив потребления отопления утвержден в размере 0,022 Гкал/кв.метр, тариф на теплоэнергию утвержден в размере 2500 руб./Гкал, площадь i-того помещения примем равной 50 кв.метров. Для упрощения расчета примем условия, что оплата отопления осуществляется , и в доме отсутствует техническая возможность установки общедомового прибора учета теплоэнергии на отопление.

В таком случае размер платы за коммунальную услугу по отоплению в i-м не оборудованном индивидуальным прибором учета тепловой энергии жилом доме и размер платы за коммунальную услугу по отоплению в i-м жилом или нежилом помещении в многоквартирном доме, который не оборудован коллективным (общедомовым) прибором учета тепловой энергии, при осуществлении оплаты в течение отопительного периода определяется по формуле 2:

Pi = Si × NT × TT,

где:
Si — общая площадь i-го помещения (жилого или нежилого) в многоквартирном доме или общая площадь жилого дома;
NT — норматив потребления коммунальной услуги по отоплению;
TT — тариф на тепловую энергию, установленный в соответствии с законодательством Российской Федерации.

Верным (и повсеместно применяемым) для рассматриваемого примера будет следующий расчет:
Si = 50 кв.метров
NT = 0,022 Гкал/кв.метр
TT = 2500 руб./Гкал

Pi = Si × NT × TT = 50 × 0,022 × 2500 = 2750 рублей

Проверим расчет по размерностям:
«кв.метр» × «Гкал/кв.метр» × × «руб./Гкал» = {«Гкал» в первом множителе и «Гкал» в знаменателе второго множителя сокращаются} = «руб.»

Размерности совпадают, стоимость услуги по отоплению Pi измеряется именно в рублях. Полученный результат расчета: 2750 рублей.

Теперь посчитаем по предлагаемым лжетеоретиками методам:

1) Величина NT равняется квадрату норматива, утвержденного субъектом РФ:
Si = 50 кв.метров
NT = 0,022 Гкал/кв.метр × 0,022 Гкал/кв.метр = 0,000484 (Гкал/кв.метр)²
TT = 2500 руб./Гкал

Pi = Si × NT × TT = 50 × 0,000484 × 2500 = 60,5

Как видно из представленного расчета, стоимость отопления получилась равной 60 рублей 50 копеек. Привлекательность такого метода состоит именно в том, что стоимость отопления получается не 2750 рублей, а всего лишь 60 рублей 50 копеек. Насколько правильный этот метод и насколько верный результат расчета получается от его применения? Для ответа на этот вопрос необходимо провести некоторые допустимые математикой преобразования, а именно: проведем расчет не в гигакалориях, а в мегакалориях, соответственно преобразовав все используемые в расчетах величины:

Si = 50 кв.метров
NT = 22 Мкал/кв.метр × 22 Мкал/кв.метр = 484 (Мкал/кв.метр)²
TT = 2,5 руб./Мкал

Pi = Si × NT × TT = 50 × 484 × 2,500 = 60500

И что же получим в результате? Стоимость отопления уже 60 500 рублей! Сразу отметим, что в случае применения верного метода математические преобразования никак не должны влиять на результат:
(Si = 50 кв.метров
NT = 0,022 Гкал/кв.метр = 22 Мкал/кв.метр
TT = 2500 руб./Гкал = 2,5 руб./Мкал

Pi = Si × NT × TT = 50 × 22 × 2,5 = 2750 рублей)

А если в предлагаемом лжетеоретиками методе расчет провести даже не мегакалориях, а в калориях, тогда:

Si = 50 кв.метров
NT = 22 000 000 кал/кв.метр × 22 000 000 кал/кв.метр = 484 000 000 000 000 (кал/кв.метр)²
TT = 0,0000025 руб./кал

Pi = Si × NT × TT = 50 × 484 000 000 000 000 × 0,0000025 = 60 500 000 000

То есть отопление помещения площадью 50 кв.метров стоит 60,5 млрд рублей в месяц!

На самом деле, разумеется, рассмотренный метод является неверным, результаты его применения не соответствуют действительности. Дополнительно проведем проверку расчета по размерностям:

«кв.метр» × «Гкал/кв.метр» × «Гкал/кв.метр» × «руб./Гкал» = {«кв.метр» в первом множителе и «кв.метр» в знаменателе второго множителя сокращаются} = «Гкал» × «Гкал/кв.метр» × «руб./Гкал» = {«Гкал» в первом множителе и «Гкал» в знаменателе третьего множителя сокращаются} = «Гкал/кв.метр» × «руб.»

Как видим, размерность «руб.» в результате не получается, что подтверждает неверность предлагаемого расчета.

2) Величина TT равняется произведению тарифа, утвержденного субъектом РФ, на норматив потребления:
Si = 50 кв.метров
NT = 0,022 Гкал/кв.метр
TT = 2500 руб./Гкал × 0,022 Гкал/кв.метр = 550 руб./кв.метр

Pi = Si × NT × TT = 50 × 0,022 × 550 = 60,5

Расчет по указанному методу дает точно такой же результат, как и первый рассмотренный неверный метод. Опровергнуть второй примененный метод можно точно так же, как и первый: преобразовать гигакалории в мега- (или кило-) калории и провести проверку расчета по размерностям.

Выводы

Миф о неправильности выбора «Гкал/кв.метр » в качестве единицы измерения норматива потребления коммунальной услуги по отоплению опровергнут. Более того, доказана логичность и обоснованность применения именно такой единицы измерения. Неправильность предлагаемых лжетеоретиками методов доказана, их расчеты опровергнуты элементарными правилами математики.

Необходимо отметить, что подавляющая часть лжетеорий и мифов жилищной сферы ставит своей целью доказывание, якобы размер платы, предъявлемой собственникам к оплате, завышен — именно это обстоятельство способствует «живучести» таких теорий, их распространению и росту их сторонников. Вполне разумно стремление потребителей каких бы то ни было услуг минимизировать свои расходы, однако попытки использования лжетеорий и мифов не приводят ни к какой экономии, а направлены лишь на , на внедрение в сознание потребителей идеи о том, что их обманывают, необоснованно взимают с них денежные средства. Очевидно, что суды и надзорные органы, уполномоченные разбираться в конфликтных ситуациях между исполнителями и потребителями коммунальных услуг, не будут руководствоваться лжетеорими и мифами, следовательно, никакой экономии и никаких иных позитивных последствий из ни для самих потребителей, ни для других участников жилищных отношений быть не может.